These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 9990873)

  • 1. Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon Nanotubes.
    Falvo MR; Clary G; Helser A; Paulson S; Taylor RM; Chi V; Brooks FP; Washburn S; Superfine R
    Microsc Microanal; 1998 Sep; 4(5):504-512. PubMed ID: 9990873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation and modification of molecular structures with the nanoManipulator.
    Guthold M; Falvo M; Matthews WG; Paulson S; Mullin J; Lord S; Erie D; Washburn S; Superfine R; Brooks FP; Taylor RM
    J Mol Graph Model; 1999; 17(3-4):187-97. PubMed ID: 10736776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of nanomanipulator using a high-speed atomic force microscope coupled with a haptic device.
    Iwata F; Ohashi Y; Ishisaki I; Picco LM; Ushiki T
    Ultramicroscopy; 2013 Oct; 133():88-94. PubMed ID: 23933597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptic-STM: a human-in-the-loop interface to a scanning tunneling microscope.
    Perdigão LM; Saywell A
    Rev Sci Instrum; 2011 Jul; 82(7):073704. PubMed ID: 21806186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain energy and lateral friction force distributions of carbon nanotubes manipulated into shapes by atomic force microscopy.
    Strus MC; Lahiji RR; Ares P; López V; Raman A; Reifenberger R
    Nanotechnology; 2009 Sep; 20(38):385709. PubMed ID: 19713587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomechanical cutting of boron nitride nanotubes by atomic force microscopy.
    Zheng M; Chen X; Park C; Fay CC; Pugno NM; Ke C
    Nanotechnology; 2013 Dec; 24(50):505719. PubMed ID: 24285263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the suitability of carbon nanotube forests as non-stick surfaces for nanomanipulation.
    Gjerde K; Kumar RTR; Andersen KNM; Kjelstrup-Hansen J; Teo KBK; Milne WI; Persson C; Mølhave K; Rubahn HG; Bøggild P
    Soft Matter; 2008 Feb; 4(3):392-399. PubMed ID: 32907198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whispering-gallery acoustic sensing: characterization of mesoscopic films and scanning probe microscopy applications.
    La Rosa AH; Li N; Fernandez R; Wang X; Nordstrom R; Padigi SK
    Rev Sci Instrum; 2011 Sep; 82(9):093704. PubMed ID: 21974591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of subsurface microscopy.
    Tetard L; Passian A; Farahi RH; Voy BH; Thundat T
    Methods Mol Biol; 2012; 926():331-43. PubMed ID: 22975973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism-Independent Manipulation of Single-Wall Carbon Nanotubes with Atomic Force Microscopy Tip.
    Ju D; Zhang Y; Li R; Liu S; Li L; Chen H
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32751468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bending and buckling of carbon nanotubes under large strain.
    Falvo MR; Clary GJ; Taylor RM; Chi V; Brooks FP; Washburn S; Superfine R
    Nature; 1997 Oct; 389(6651):582-4. PubMed ID: 9335495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a nano manipulator based on an atomic force microscope coupled with a haptic device: a novel manipulation tool for scanning electron microscopy.
    Iwata F; Kawanishi S; Aoyama H; Ushiki T
    Arch Histol Cytol; 2009; 72(4-5):271-8. PubMed ID: 21471662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation.
    Tombler TW; Zhou C; Alexseyev L; Kong J; Dai H; Liu L; Jayanthi CS; Tang M; Wu SY
    Nature; 2000 Jun; 405(6788):769-72. PubMed ID: 10866192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational models of a nano probe tip for static behaviors.
    Feng SC; Vorburger TV; Joung CB; Dixson RG; Fu J; Ma L
    Scanning; 2008; 30(1):47-55. PubMed ID: 18200506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral force microscopy of multiwalled carbon nanotubes.
    Lievonen J; Ahlskog M
    Ultramicroscopy; 2009 Jun; 109(7):825-9. PubMed ID: 19375229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Application of atomic force microscope in life science research].
    Yu YG; Xu RX; Cai YQ; Jiang XD; Ke YQ
    Di Yi Jun Yi Da Xue Xue Bao; 2005 Feb; 25(2):143-7. PubMed ID: 15698990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional stick-slip on a soft elastic polymer: pattern generation using atomic force microscopy.
    Watson JA; Brown CL; Myhra S; Watson GS
    Nanotechnology; 2006 May; 17(10):2581-9. PubMed ID: 21727508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the Resistance and Force of a Carbon Nanotube/Metal Side Contact by Nanomanipulation.
    Yu N; Nakajima M; Shi Q; Yang Z; Wang H; Sun L; Huang Q; Fukuda T
    Scanning; 2017; 2017():5910734. PubMed ID: 29109819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotubes: a promising standard for quantitative evaluation of AFM tip apex geometry.
    Wang Y; Chen X
    Ultramicroscopy; 2007; 107(4-5):293-8. PubMed ID: 17011708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AFM based MWCNT nanomanipulation with force and visual feedback.
    Tian X; Wang Y; Xi N; Liu L; Jiao N; Dong Z
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1647-50. PubMed ID: 19441591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.