These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 9991346)

  • 1. Subharmonic energy-gap structure and heating effects in superconducting niobium point contacts.
    Flensberg K; Hansen JB
    Phys Rev B Condens Matter; 1989 Nov; 40(13):8693-8699. PubMed ID: 9991346
    [No Abstract]   [Full Text] [Related]  

  • 2. Theory of subharmonic gap structure in superconducting mesoscopic tunnel contacts.
    Bratus' EN; Shumeiko VS; Wendin G
    Phys Rev Lett; 1995 Mar; 74(11):2110-2113. PubMed ID: 10057844
    [No Abstract]   [Full Text] [Related]  

  • 3. Subharmonic shapiro steps and assisted tunneling in superconducting point contacts.
    Cuevas JC; Heurich J; Martín-Rodero A; Levy Yeyati A; Schön G
    Phys Rev Lett; 2002 Apr; 88(15):157001. PubMed ID: 11955213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise and full counting statistics of incoherent multiple Andreev reflection.
    Pilgram S; Samuelsson P
    Phys Rev Lett; 2005 Mar; 94(8):086806. PubMed ID: 15783919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subharmonic energy-gap structure in superconducting weak links.
    Flensberg K; Hansen JB; Octavio M
    Phys Rev B Condens Matter; 1988 Nov; 38(13):8707-8711. PubMed ID: 9945647
    [No Abstract]   [Full Text] [Related]  

  • 6. Tuning of superconducting niobium nitride terahertz metamaterials.
    Wu J; Jin B; Xue Y; Zhang C; Dai H; Zhang L; Cao C; Kang L; Xu W; Chen J; Wu P
    Opt Express; 2011 Jun; 19(13):12021-6. PubMed ID: 21716437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transport in single-wall carbon nanotube weak links in the Fabry-Perot regime.
    Jørgensen HI; Grove-Rasmussen K; Novotný T; Flensberg K; Lindelof PE
    Phys Rev Lett; 2006 May; 96(20):207003. PubMed ID: 16803198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoemission spectroscopy of the strong-coupling superconducting transitions in lead and niobium.
    Chainani A; Yokoya T; Kiss T; Shin S
    Phys Rev Lett; 2000 Aug; 85(9):1966-9. PubMed ID: 10970659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Niobium-based superconducting nano-device fabrication using all-metal suspended masks.
    Samaddar S; van Zanten D; Fay A; Sacépé B; Courtois H; Winkelmann CB
    Nanotechnology; 2013 Sep; 24(37):375304. PubMed ID: 23974037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-loss terahertz metamaterial from superconducting niobium nitride films.
    Zhang CH; Wu JB; Jin BB; Ji ZM; Kang L; Xu WW; Chen J; Tonouchi M; Wu PH
    Opt Express; 2012 Jan; 20(1):42-7. PubMed ID: 22274327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical analysis of soft point contact Andreev reflection spectra between superconducting films and pressed In.
    Parab P; Chauhan P; Muthurajan H; Bose S
    J Phys Condens Matter; 2017 Apr; 29(13):135901. PubMed ID: 28199220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abrupt change of the superconducting gap structure at the nematic critical point in FeSe
    Sato Y; Kasahara S; Taniguchi T; Xing X; Kasahara Y; Tokiwa Y; Yamakawa Y; Kontani H; Shibauchi T; Matsuda Y
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1227-1231. PubMed ID: 29363600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for long-lived quasiparticles trapped in superconducting point contacts.
    Zgirski M; Bretheau L; Le Masne Q; Pothier H; Esteve D; Urbina C
    Phys Rev Lett; 2011 Jun; 106(25):257003. PubMed ID: 21770665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low loss and magnetic field-tunable superconducting terahertz metamaterial.
    Jin B; Zhang C; Engelbrecht S; Pimenov A; Wu J; Xu Q; Cao C; Chen J; Xu W; Kang L; Wu P
    Opt Express; 2010 Aug; 18(16):17504-9. PubMed ID: 20721135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212.
    Lee WS; Vishik IM; Tanaka K; Lu DH; Sasagawa T; Nagaosa N; Devereaux TP; Hussain Z; Shen ZX
    Nature; 2007 Nov; 450(7166):81-4. PubMed ID: 17972881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetoresistance anisotropy of a one-dimensional superconducting niobium strip.
    Hua J; Xiao ZL; Imre A; Yu SH; Patel U; Ocola LE; Divan R; Koshelev A; Pearson J; Welp U; Kwok WK
    Phys Rev Lett; 2008 Aug; 101(7):077003. PubMed ID: 18764568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct fermi surface topology and nodeless superconducting gap in a (Tl0.58Rb0.42)Fe1.72Se2 superconductor.
    Mou D; Liu S; Jia X; He J; Peng Y; Zhao L; Yu L; Liu G; He S; Dong X; Zhang J; Wang H; Dong C; Fang M; Wang X; Peng Q; Wang Z; Zhang S; Yang F; Xu Z; Chen C; Zhou XJ
    Phys Rev Lett; 2011 Mar; 106(10):107001. PubMed ID: 21469824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoscopic superconductivity and high spin polarization coexisting at metallic point contacts on Weyl semimetal TaAs.
    Aggarwal L; Gayen S; Das S; Kumar R; Süß V; Felser C; Shekhar C; Sheet G
    Nat Commun; 2017 Jan; 8():13974. PubMed ID: 28071685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating sub-THz radiation with current in superconducting metamaterial.
    Savinov V; Fedotov VA; Anlage SM; de Groot PA; Zheludev NI
    Phys Rev Lett; 2012 Dec; 109(24):243904. PubMed ID: 23368321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superconducting properties of lithographic lead break junctions.
    Weber D; Scheer E
    Nanotechnology; 2018 Jan; 29(4):045703. PubMed ID: 29125473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.