These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9991775)

  • 1. Spin splitting of the conduction band and de Haas-van Alphen effect in Hg1-xFexSe.
    La Rocca GC ; Miller MM; Rodriguez S
    Phys Rev B Condens Matter; 1989 Dec; 40(17):11723-11727. PubMed ID: 9991775
    [No Abstract]   [Full Text] [Related]  

  • 2. Magnetic breakdown and the de Haas-van Alphen effect in Hg1-xFexSe.
    Miller MM; Reifenberger R
    Phys Rev B Condens Matter; 1988 Aug; 38(5):3423-3432. PubMed ID: 9946687
    [No Abstract]   [Full Text] [Related]  

  • 3. Temperature dependence of the Shubnikov-de Haas effect in Hg1-xFexSe.
    Vaziri M; Schwarzkopf DA; Reifenberger R
    Phys Rev B Condens Matter; 1985 Mar; 31(6):3811-3816. PubMed ID: 9936280
    [No Abstract]   [Full Text] [Related]  

  • 4. The modulation of the de Haas-van Alphen effect in graphene by electric field.
    Zhang S; Ma N; Zhang E
    J Phys Condens Matter; 2010 Mar; 22(11):115302. PubMed ID: 21389460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of temperature on the magnetic oscillations in graphene with spin splitting: a new approach.
    Escudero F; Ardenghi JS; Jasen P
    J Phys Condens Matter; 2018 Jul; 30(27):275803. PubMed ID: 29798935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-orbit coupling and k-dependent Zeeman splitting in strontium ruthenate.
    Rozbicki EJ; Annett JF; Souquet JR; Mackenzie AP
    J Phys Condens Matter; 2011 Mar; 23(9):094201. PubMed ID: 21339554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Berry phase and de Haas-van Alphen effect in LaRhIn5.
    Mikitik GP; Sharlai YV
    Phys Rev Lett; 2004 Sep; 93(10):106403. PubMed ID: 15447428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. de Haas-van Alphen study of the Fermi surfaces of superconducting LiFeP and LiFeAs.
    Putzke C; Coldea AI; Guillamón I; Vignolles D; McCollam A; Leboeuf D; Watson MD; Mazin II; Kasahara S; Terashima T; Shibauchi T; Matsuda Y; Carrington A
    Phys Rev Lett; 2012 Jan; 108(4):047002. PubMed ID: 22400881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. de Haas-van Alphen effect in ZrZn2 under pressure: crossover between two magnetic states.
    Kimura N; Endo M; Isshiki T; Minagawa S; Ochiai A; Aoki H; Terashima T; Uji S; Matsumoto T; Lonzarich GG
    Phys Rev Lett; 2004 May; 92(19):197002. PubMed ID: 15169437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous de Haas-van Alphen oscillations in CeCoIn5.
    McCollam A; Julian SR; Rourke PM; Aoki D; Flouquet J
    Phys Rev Lett; 2005 May; 94(18):186401. PubMed ID: 15904385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple quantum oscillations in the de Haas-van Alphen spectra of the underdoped high-temperature superconductor YBa2Cu3O6.5.
    Audouard A; Jaudet C; Vignolles D; Liang R; Bonn DA; Hardy WN; Taillefer L; Proust C
    Phys Rev Lett; 2009 Oct; 103(15):157003. PubMed ID: 19905661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. de Haas-van Alphen effect in single crystal MgB2.
    Yelland EA; Cooper JR; Carrington A; Hussey NE; Meeson PJ; Lee S; Yamamoto A; Tajima S
    Phys Rev Lett; 2002 May; 88(21):217002. PubMed ID: 12059494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermi surface of SrFe2P2 determined by the de Haas-van Alphen effect.
    Analytis JG; Andrew CM; Coldea AI; McCollam A; Chu JH; McDonald RD; Fisher IR; Carrington A
    Phys Rev Lett; 2009 Aug; 103(7):076401. PubMed ID: 19792666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-orbit coupling in ferromagnetic nickel.
    Bünemann J; Gebhard F; Ohm T; Weiser S; Weber W
    Phys Rev Lett; 2008 Dec; 101(23):236404. PubMed ID: 19113573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic de Haas-van Alphen effect.
    Fang K; Yu Z; Fan S
    Opt Express; 2013 Jul; 21(15):18216-24. PubMed ID: 23938692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical Detection of the De Haas-van Alphen Effect in Graphene.
    Manninen J; Laitinen A; Massel F; Hakonen P
    Nano Lett; 2022 Dec; 22(24):9869-9875. PubMed ID: 36511693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Oscillations without a Fermi Surface and the Anomalous de Haas-van Alphen Effect.
    Knolle J; Cooper NR
    Phys Rev Lett; 2015 Oct; 115(14):146401. PubMed ID: 26551816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. de Haas-van Alphen oscillations in the underdoped high-temperature superconductor YBa2Cu3O6.5.
    Jaudet C; Vignolles D; Audouard A; Levallois J; LeBoeuf D; Doiron-Leyraud N; Vignolle B; Nardone M; Zitouni A; Liang R; Bonn DA; Hardy WN; Taillefer L; Proust C
    Phys Rev Lett; 2008 May; 100(18):187005. PubMed ID: 18518412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of quasiparticle properties in UGe(2) with hydrostatic pressure studied via the de Haas-van Alphen effect.
    Terashima T; Matsumoto T; Terakura C; Uji S; Kimura N; Endo M; Komatsubara T; Aoki H
    Phys Rev Lett; 2001 Oct; 87(16):166401. PubMed ID: 11690221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. de Haas-van Alphen effect across the metamagnetic transition in Sr3Ru2O7.
    Borzi RA; Grigera SA; Perry RS; Kikugawa N; Kitagawa K; Maeno Y; Mackenzie AP
    Phys Rev Lett; 2004 May; 92(21):216403. PubMed ID: 15245301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.