These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9991958)

  • 1. Band folding and energy-gap formation in Ag-Au superlattices.
    Miller T; Mueller MA; Chiang T
    Phys Rev B Condens Matter; 1989 Jul; 40(2):1301-1304. PubMed ID: 9991958
    [No Abstract]   [Full Text] [Related]  

  • 2. Theoretical study of nitride short period superlattices.
    Gorczyca I; Suski T; Christensen NE; Svane A
    J Phys Condens Matter; 2018 Feb; 30(6):063001. PubMed ID: 29256446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the band gap and polarization of BaSnO
    Zhang Y; Sahoo MP; Wang J
    Phys Chem Chem Phys; 2017 Mar; 19(10):7032-7039. PubMed ID: 28197560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation.
    Zhang Q; Xie J; Yang J; Lee JY
    ACS Nano; 2009 Jan; 3(1):139-48. PubMed ID: 19206260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of medium band gap Ag-Bi-Nb-O and Ag-Bi-Ta-O semiconductors for driving direct water splitting with visible light.
    Wang L; Cao B; Kang W; Hybertsen M; Maeda K; Domen K; Khalifah PG
    Inorg Chem; 2013 Aug; 52(16):9192-205. PubMed ID: 23901790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noble and alkali adatoms on a [Formula: see text]-Ag surface: a first-principles study.
    Xie X; Li JM; Chen WG; Wang F; Li SF; Sun Q; Jia Y
    J Phys Condens Matter; 2010 Jan; 22(8):085001. PubMed ID: 21389403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A facile and controllable strategy to synthesize Au-Ag alloy nanoparticles within polyelectrolyte multilayer nanoreactors upon thermal reduction.
    Shang L; Jin L; Guo S; Zhai J; Dong S
    Langmuir; 2010 May; 26(9):6713-9. PubMed ID: 20017511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible light driven photo-degradation of Congo red by TiO
    Huerta-Aguilar CA; Palos-Barba V; Thangarasu P; Koodali RT
    Chemosphere; 2018 Dec; 213():481-497. PubMed ID: 30245225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.
    Tsao YC; Rej S; Chiu CY; Huang MH
    J Am Chem Soc; 2014 Jan; 136(1):396-404. PubMed ID: 24341355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering band gap and electronic transport in organic-inorganic halide perovskites by superlattices.
    Singh R; Kottokkaran R; Dalal VL; Balasubramanian G
    Nanoscale; 2017 Jun; 9(25):8600-8607. PubMed ID: 28534909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bombardment-induced tunable superlattices in the growth of Au-Ni films.
    He JH; Carosella CA; Hubler GK; Qadri SB; Sprague JA
    Phys Rev Lett; 2006 Feb; 96(5):056105. PubMed ID: 16486960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Multispectroscopic Analysis on the Interaction and Corona Formation of Human Serum Albumin with Gold/Silver Alloy Nanoparticles.
    Selva Sharma A; Ilanchelian M
    J Phys Chem B; 2015 Jul; 119(30):9461-76. PubMed ID: 26106942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lifshitz transition across the Ag/Cu(111) superlattice band gap tuned by interface doping.
    Abd El-Fattah ZM; Matena M; Corso M; GarcĂ­a de Abajo FJ; Schiller F; Ortega JE
    Phys Rev Lett; 2011 Aug; 107(6):066803. PubMed ID: 21902357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelength-band-tuning photodiodes by using various metallic nanoparticles.
    Hwang JD; Chan YD; Chou TC
    Nanotechnology; 2015 Nov; 26(46):465202. PubMed ID: 26508114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman scattering of 4-aminobenzenethiol sandwiched between Ag/Au nanoparticle and macroscopically smooth Au substrate.
    Kim K; Yoon JK
    J Phys Chem B; 2005 Nov; 109(44):20731-6. PubMed ID: 16853687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The (3)[ndsigma*(n+1)psigma] emissions of linear silver(I) and gold(I) chains with bridging phosphine ligands.
    Tong GS; Kui SC; Chao HY; Zhu N; Che CM
    Chemistry; 2009 Oct; 15(41):10777-89. PubMed ID: 19777520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-shell Ag-Au nanoparticles from replacement reaction in organic medium.
    Yang J; Lee JY; Too HP
    J Phys Chem B; 2005 Oct; 109(41):19208-12. PubMed ID: 16853479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-band gap of monolayer superlattices calculated by a modified tight-binding method with electronegativity.
    Matsui Y; Kusumi Y; Nakaue A
    Phys Rev B Condens Matter; 1993 Sep; 48(12):8827-8832. PubMed ID: 10007100
    [No Abstract]   [Full Text] [Related]  

  • 20. Formation of low-symmetric 2D superlattices of gold nanoparticles through surface modification by acid-base interaction.
    Kanehara M; Oumi Y; Sano T; Teranishi T
    J Am Chem Soc; 2003 Jul; 125(29):8708-9. PubMed ID: 12862449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.