BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 9992401)

  • 1. Comment on "Mechanism of nuclear spin-lattice relaxation in insulators at very low temperatures".
    Rõõm T
    Phys Rev B Condens Matter; 1989 Aug; 40(6):4201-4202. PubMed ID: 9992401
    [No Abstract]   [Full Text] [Related]  

  • 2. Reply to "Comment on 'Mechanism of nuclear spin-lattice relaxation in insulators at very low temperatures' ".
    Waugh JS; Slichter CP
    Phys Rev B Condens Matter; 1989 Aug; 40(6):4203-4204. PubMed ID: 9992402
    [No Abstract]   [Full Text] [Related]  

  • 3. Mechanism of nuclear spin-lattice relaxation in insulators at very low temperatures.
    Waugh JS; Slichter CP
    Phys Rev B Condens Matter; 1988 Mar; 37(8):4337-4339. PubMed ID: 9945088
    [No Abstract]   [Full Text] [Related]  

  • 4. Spin-wave contribution to the nuclear spin-lattice relaxation in triplet superconductors.
    Rostunov T; Demler E; Georges A
    Phys Rev Lett; 2006 Feb; 96(7):077002. PubMed ID: 16606127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tetranuclear manganese cluster in photosystem II: location and magnetic properties of the S2 state as determined by saturation-recovery EPR spectroscopy.
    Koulougliotis D; Schweitzer RH; Brudvig GW
    Biochemistry; 1997 Aug; 36(32):9735-46. PubMed ID: 9245405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton Spin-Lattice Relaxation in Organic Molecular Solids: Polymorphism and the Dependence on Sample Preparation.
    Beckmann PA; Ford J; Malachowski WP; McGhie AR; Moore CE; Rheingold AL; Sloan GJ; Szewczyk ST
    Chemphyschem; 2018 Sep; 19(18):2423-2436. PubMed ID: 29956438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spin-orbital-entangled quantum liquid on a honeycomb lattice.
    Kitagawa K; Takayama T; Matsumoto Y; Kato A; Takano R; Kishimoto Y; Bette S; Dinnebier R; Jackeli G; Takagi H
    Nature; 2018 Feb; 554(7692):341-345. PubMed ID: 29446382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.
    Marsh D
    J Magn Reson; 2016 Nov; 272():166-171. PubMed ID: 27712989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methyl group rotation, 1H spin-lattice relaxation in an organic solid, and the analysis of nonexponential relaxation.
    Beckmann PA; Schneider E
    J Chem Phys; 2012 Feb; 136(5):054508. PubMed ID: 22320752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron spin echo of Cu(2+) in the triglycine sulfate crystal family (TGS, TGSe, TGFB): electron spin-lattice relaxation, Debye temperature and spin-phonon coupling.
    Lijewski S; Goslar J; Hoffmann SK
    J Phys Condens Matter; 2006 Jul; 18(26):6159-69. PubMed ID: 21690828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron spin-lattice relaxation rates for high-spin Fe(III) complexes in glassy solvents at temperatures between 6 and 298 K.
    Zhou Y; Bowler BE; Eaton GR; Eaton SS
    J Magn Reson; 2000 May; 144(1):115-22. PubMed ID: 10783280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement and chemical shift perturbation.
    Prosser RS; Luchette PA
    J Magn Reson; 2004 Dec; 171(2):225-32. PubMed ID: 15546748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of the phosphate group in phospholipid bilayers. A 31P angular dependent nuclear spin relaxation time study.
    Milburn MP; Jeffrey KR
    Biophys J; 1989 Sep; 56(3):543-9. PubMed ID: 2790137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Dependence of the rate of EPR spin-lattice relaxation of certain proteins on temperatures in the interval 6-22 K].
    Lebanidze AV; Buishvili TL; Kakabadze GR
    Biofizika; 1997; 42(4):811-4. PubMed ID: 9410011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron spin echo and spin relaxation of low-symmetry Mn(2+)-complexes in ammonium oxalate monohydrate single crystal.
    Hoffmann SK; Lijewski S; Goslar J; Mielniczek-Brzóska E
    J Magn Reson; 2014 Sep; 246():46-56. PubMed ID: 25064270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explanation of spin-lattice relaxation rates of spin labels obtained with multifrequency saturation recovery EPR.
    Mailer C; Nielsen RD; Robinson BH
    J Phys Chem A; 2005 May; 109(18):4049-61. PubMed ID: 16833727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic-field-induced enhancements of nuclear spin-lattice relaxation rates in the heavy-fermion superconductor CeCoIn5 using 59Co nuclear magnetic resonance.
    Sakai H; Brown SE; Baek SH; Ronning F; Bauer ED; Thompson JD
    Phys Rev Lett; 2011 Sep; 107(13):137001. PubMed ID: 22026890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the spin-lattice relaxation of 13CO and 13CO2 adsorbed in the metal-organic frameworks Cu3(btc)2 and Cu(3-x)Zn(x)(btc)2.
    Gul-E-Noor F; Michel D; Krautscheid H; Haase J; Bertmer M
    J Chem Phys; 2013 Jul; 139(3):034202. PubMed ID: 23883020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achievement of high nuclear spin polarization using lanthanides as low-temperature NMR relaxation agents.
    Peat DT; Horsewill AJ; Köckenberger W; Perez Linde AJ; Gadian DG; Owers-Bradley JR
    Phys Chem Chem Phys; 2013 May; 15(20):7586-91. PubMed ID: 23588269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using saturation-recovery EPR to measure distances in proteins: applications to photosystem II.
    Hirsh DJ; Beck WF; Innes JB; Brudvig GW
    Biochemistry; 1992 Jan; 31(2):532-41. PubMed ID: 1310040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.