These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9992648)

  • 21. Hole gas accumulation in Si/Ge core-shell and Si/Ge/Si core-double shell nanowires.
    Zhang X; Jevasuwan W; Pradel KC; Subramani T; Takei T; Fukata N
    Nanoscale; 2018 Dec; 10(45):21062-21068. PubMed ID: 30187068
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural changes in amorphous Ge(x)SiO(y) on the way to nanocrystal formation.
    Nyrow A; Sternemann C; Sahle ChJ; Hohl A; Zschintzsch-Dias M; Schwamberger A; Mende K; Brinkmann I; Moretti Sala M; Wagner R; Meier A; Völklein F; Tolan M
    Nanotechnology; 2013 Apr; 24(16):165701. PubMed ID: 23535465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ag-NP@Ge-nanotaper/Si-micropillar ordered arrays as ultrasensitive and uniform surface enhanced Raman scattering substrates.
    Liu J; Meng G; Li Z; Huang Z; Li X
    Nanoscale; 2015 Nov; 7(43):18218-24. PubMed ID: 26483141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Standing optical phonons in finite semiconductor superlattices studied by resonant Raman scattering in a double microcavity.
    Fainstein A; Trigo M; Oliva D; Jusserand B; Freixanet T; Thierry-Mieg V
    Phys Rev Lett; 2001 Apr; 86(15):3411-4. PubMed ID: 11327983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium.
    Zhu GH; Lee H; Lan YC; Wang XW; Joshi G; Wang DZ; Yang J; Vashaee D; Guilbert H; Pillitteri A; Dresselhaus MS; Chen G; Ren ZF
    Phys Rev Lett; 2009 May; 102(19):196803. PubMed ID: 19518985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The study on Raman spectra of Si nanowires].
    Tan Y; Tang YH; Pei LZ; Chen YW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr; 27(4):725-9. PubMed ID: 17608184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism.
    Wang X; Shi W; She G; Mu L
    J Am Chem Soc; 2011 Oct; 133(41):16518-23. PubMed ID: 21939241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscale, catalytically enhanced local oxidation of silicon-containing layers by 'burrowing' Ge quantum dots.
    Chien CY; Chang YJ; Chen KH; Lai WT; George T; Scherer A; Li PW
    Nanotechnology; 2011 Oct; 22(43):435602. PubMed ID: 21969308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonant Raman scattering by phonons in a strong magnetic field: GaAs.
    Ambrazevicius G; Cardona M; Merlin R
    Phys Rev Lett; 1987 Aug; 59(6):700-703. PubMed ID: 10035848
    [No Abstract]   [Full Text] [Related]  

  • 31. Doubly and triply resonant Raman scattering by LO phonons in GaAs/AlAs superlattices.
    Alexandrou A; Cardona M; Ploog K
    Phys Rev B Condens Matter; 1988 Jul; 38(3):2196-2199. PubMed ID: 9946517
    [No Abstract]   [Full Text] [Related]  

  • 32. Triply resonant Raman scattering by LO phonons in a Wannier-Stark ladder.
    Schneider H; Wagner J; Fujiwara K; Ploog K
    Phys Rev B Condens Matter; 1990 Dec; 42(17):11430-11433. PubMed ID: 9995448
    [No Abstract]   [Full Text] [Related]  

  • 33. Resonant phenomena of hyper-Raman-scattering of optic phonons in a TiO2 crystal.
    Watanabe K; Inoue K; Minami F
    Phys Rev B Condens Matter; 1992 Jul; 46(4):2024-2033. PubMed ID: 10003876
    [No Abstract]   [Full Text] [Related]  

  • 34. Triply resonant Raman scattering via nonequilibrium phonons in GaAs quantum wells.
    Liu Y; Sooryakumar R; Koteles ES; Elman B
    Phys Rev B Condens Matter; 1992 Mar; 45(12):6769-6775. PubMed ID: 10000439
    [No Abstract]   [Full Text] [Related]  

  • 35. Resonant Raman scattering by LO phonons near the E0+ Delta 0 gap of GaSb.
    Kauschke W; Cardona M
    Phys Rev B Condens Matter; 1987 Jun; 35(18):9619-9624. PubMed ID: 9941388
    [No Abstract]   [Full Text] [Related]  

  • 36. Atomic and electronic structures of amorphous Ge(2)Sb(2)Te(5); melt-quenched versus ideal glasses.
    Cho E; Im J; Park C; Son WJ; Kim DH; Horii H; Ihm J; Han S
    J Phys Condens Matter; 2010 May; 22(20):205504. PubMed ID: 21393709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-photon resonant hyper-Raman scattering by optic phonons due to the 2P exciton of ZnSe.
    Inoue K; Yoshida K; Minami F; Kato Y
    Phys Rev B Condens Matter; 1992 Apr; 45(15):8807-8810. PubMed ID: 10000734
    [No Abstract]   [Full Text] [Related]  

  • 38. Resonant Raman scattering and interference effects of LO phonons at the E0+ Delta 0 gap of InP.
    Kauschke W; Cardona M
    Phys Rev B Condens Matter; 1986 Apr; 33(8):5473-5481. PubMed ID: 9939052
    [No Abstract]   [Full Text] [Related]  

  • 39. Resonant Raman scattering by LO phonons in AlxGa1-xAs (x < 0.1): Alloying and interference effects.
    Kauschke W; Cardona M; Bauser E
    Phys Rev B Condens Matter; 1987 May; 35(15):8030-8041. PubMed ID: 9941140
    [No Abstract]   [Full Text] [Related]  

  • 40. Resonant Raman scattering by LO phonons in AlxGa1-xAs (0.2Trallero-Giner C; Gavrilenko VI; Cardona M
    Phys Rev B Condens Matter; 1989 Jul; 40(2):1238-1243. PubMed ID: 9991948
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.