These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9992701)

  • 1. Lattice relaxation of DX-like donors in ZnxCd1-xTe.
    Khachaturyan K; Kaminska M; Weber ER; Becla P; Street RA
    Phys Rev B Condens Matter; 1989 Sep; 40(9):6304-6310. PubMed ID: 9992701
    [No Abstract]   [Full Text] [Related]  

  • 2. Composition-tuned ZnO/Zn(x)Cd(1-x)Te core/shell nanowires array with broad spectral absorption from UV to NIR for hydrogen generation.
    Zhan X; Wang Q; Wang F; Wang Y; Wang Z; Cao J; Safdar M; He J
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2878-83. PubMed ID: 24467167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bandgap tuning in ZnxCd1-xTe superlattices through variable atomic ordering.
    Barone V; Ellingson RJ; Khare SV
    J Chem Phys; 2024 Aug; 161(6):. PubMed ID: 39132796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoluminescence and absorption studies of defects in CdTe and ZnxCd1-xTe crystals.
    Davis CB; Allred DD; Reyes-Mena A; González-Hernández J; González O; Hess BC; Allred WP
    Phys Rev B Condens Matter; 1993 May; 47(20):13363-13369. PubMed ID: 10005644
    [No Abstract]   [Full Text] [Related]  

  • 5. Thermal vibrational amplitudes of constituent atoms and mechanical stability in ZnxCd1-xTe and Hg1-yCdyTe.
    Comedi D; Kalish R
    Phys Rev B Condens Matter; 1992 Dec; 46(24):15844-15858. PubMed ID: 10003724
    [No Abstract]   [Full Text] [Related]  

  • 6. High Thermoelectric Figure of Merit Achieved in Cu
    Yao Y; Zhang BP; Pei J; Sun Q; Nie G; Zhang WZ; Zhuo ZT; Zhou W
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32201-32211. PubMed ID: 30178653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles study of DX centers in CdTe, ZnTe, and CdxZn1-xTe alloys.
    Park CH; Chadi DJ
    Phys Rev B Condens Matter; 1995 Oct; 52(16):11884-11890. PubMed ID: 9980325
    [No Abstract]   [Full Text] [Related]  

  • 8. Large- versus small-lattice-relaxation models of the DX centers in Ga1-xAlxAs.
    Dmochowski JE; Langer JM; Raczynska J; Jantsch W
    Phys Rev B Condens Matter; 1988 Aug; 38(5):3276-3279. PubMed ID: 9946666
    [No Abstract]   [Full Text] [Related]  

  • 9. Evidence for large lattice relaxation at the DX center in Si-doped AlxGa.
    Mooney PM; Northrop GA; Morgan TN; Grimmeiss HG
    Phys Rev B Condens Matter; 1988 May; 37(14):8298-8307. PubMed ID: 9944166
    [No Abstract]   [Full Text] [Related]  

  • 10. Using saturation-recovery EPR to measure distances in proteins: applications to photosystem II.
    Hirsh DJ; Beck WF; Innes JB; Brudvig GW
    Biochemistry; 1992 Jan; 31(2):532-41. PubMed ID: 1310040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of polymerization shrinkage of different composites using a photoelastic method.
    Rullman I; Patyna M; Janssen B; Willershausen B
    Am J Dent; 2017 Feb; 30(1):16-22. PubMed ID: 29178709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roughness and microhardness of composites after different bleaching techniques.
    Leal A; Paula A; Ramalho A; Esteves M; Ferreira MM; Carrilho E
    J Appl Biomater Funct Mater; 2015 Dec; 13(4):e381-8. PubMed ID: 26616752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot-exciton relaxation in CdxZn1-xTe/ZnTe multiple quantum wells.
    Stanley RP; Hegarty J; Fischer R; Feldmann J; Göbel EO; Feldman RD; Austin RF
    Phys Rev Lett; 1991 Jul; 67(1):128-131. PubMed ID: 10044069
    [No Abstract]   [Full Text] [Related]  

  • 14. Spin-lattice relaxation times of single donors and donor clusters in silicon.
    Hsueh YL; Büch H; Tan Y; Wang Y; Hollenberg LC; Klimeck G; Simmons MY; Rahman R
    Phys Rev Lett; 2014 Dec; 113(24):246406. PubMed ID: 25541787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of CdSe, ZnSe, and ZnxCd1-xSe nanocrystals and their silica sheathed core/shell structures.
    Ge JP; Xu S; Zhuang J; Wang X; Peng Q; Li YD
    Inorg Chem; 2006 Jun; 45(13):4922-7. PubMed ID: 16780313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCd1-xS/TiO2 nanocomposites.
    Li W; Li D; Meng S; Chen W; Fu X; Shao Y
    Environ Sci Technol; 2011 Apr; 45(7):2987-93. PubMed ID: 21361322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local and electronic structure around Ga in CdTe: evidence of DX- and A-centers.
    Koteski V; Belošević-Čavor J; Fochuk P; Mahnke HE
    J Synchrotron Radiat; 2013 Jan; 20(Pt 1):166-71. PubMed ID: 23254670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magneto-optical studies of HgTe/HgxCd1-xTe(S) core-shell nanocrystals.
    Fradkin L; Langof L; Lifshitz E; Rogach A; Gaponik N; Weller H; Eychmüller A
    Chemphyschem; 2003 Nov; 4(11):1203-10. PubMed ID: 14652999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin diffusion and
    Hayashi S; Jimura K
    Solid State Nucl Magn Reson; 2017 Nov; 88():15-21. PubMed ID: 29126075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immersed boundary lattice Boltzmann model based on multiple relaxation times.
    Lu J; Han H; Shi B; Guo Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016711. PubMed ID: 22400705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.