These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 9993114)
1. Two-photon resonant effect of hyper-Raman scattering in the vicinity of the direct forbidden gap in a rutile crystal. Watanabe K; Inoue K Phys Rev B Condens Matter; 1990 Apr; 41(11):7957-7960. PubMed ID: 9993114 [No Abstract] [Full Text] [Related]
2. Hyper-Rayleigh and hyper-Raman scatterings with intermediate and two-photon resonances. Leng W; Kelley AM J Chem Phys; 2007 Oct; 127(16):164509. PubMed ID: 17979362 [TBL] [Abstract][Full Text] [Related]
3. Solvent effects on resonant first hyperpolarizabilities and Raman and hyper-Raman spectra of DANS and a water-soluble analog. Shoute LC; Woo HY; Vak D; Bazan GC; Myers Kelley A J Chem Phys; 2006 Aug; 125(5):054506. PubMed ID: 16942225 [TBL] [Abstract][Full Text] [Related]
4. Resonant hyper-Raman scattering due to the forbidden LO phonon in SrTiO3. Inoue K; Watanabe K Phys Rev B Condens Matter; 1989 Jan; 39(3):1977-1980. PubMed ID: 9948428 [No Abstract] [Full Text] [Related]
5. Resonance hyper-Raman excitation profiles of a donor-acceptor substituted distyrylbenzene: one-photon and two-photon states. Shoute LC; Bartholomew GP; Bazan GC; Kelley AM J Chem Phys; 2005 May; 122(18):184508. PubMed ID: 15918730 [TBL] [Abstract][Full Text] [Related]
6. Hyper-Raman scattering enhanced by anisotropic dimer plasmons on artificial nanostructures. Ikeda K; Takase M; Sawai Y; Nabika H; Murakoshi K; Uosaki K J Chem Phys; 2007 Sep; 127(11):111103. PubMed ID: 17887818 [TBL] [Abstract][Full Text] [Related]
7. Solvent effects on the resonance Raman and hyper-Raman spectra and first hyperpolarizability of N,N-dipropyl-p-nitroaniline. Shoute LC; Helburn R; Kelley AM J Phys Chem A; 2007 Feb; 111(7):1251-8. PubMed ID: 17256826 [TBL] [Abstract][Full Text] [Related]
9. Quantitative orientation analysis by sum frequency generation in the presence of near-resonant background signal: acetonitrile on rutile TiO2 (110). Jang JH; Lydiatt F; Lindsay R; Baldelli S J Phys Chem A; 2013 Jul; 117(29):6288-302. PubMed ID: 23730957 [TBL] [Abstract][Full Text] [Related]
10. Theoretical study of doubly resonant IR-UV hyper-Raman scattering. Zheng RH; Wei WM; Sun YY; Shi Q J Phys Chem A; 2011 Mar; 115(11):2231-7. PubMed ID: 21351786 [TBL] [Abstract][Full Text] [Related]
11. Resonance Raman and resonance hyper-Raman intensities: structure and dynamics of molecular excited states in solution. Myers Kelley A J Phys Chem A; 2008 Nov; 112(47):11975-91. PubMed ID: 18954035 [TBL] [Abstract][Full Text] [Related]
12. Two-photon resonant hyper-Raman scattering by optic phonons due to the 2P exciton of ZnSe. Inoue K; Yoshida K; Minami F; Kato Y Phys Rev B Condens Matter; 1992 Apr; 45(15):8807-8810. PubMed ID: 10000734 [No Abstract] [Full Text] [Related]
13. Resonant phenomena of hyper-Raman-scattering of optic phonons in a TiO2 crystal. Watanabe K; Inoue K; Minami F Phys Rev B Condens Matter; 1992 Jul; 46(4):2024-2033. PubMed ID: 10003876 [No Abstract] [Full Text] [Related]
14. Forbidden one-LO-phonon resonant Raman scattering and multiphonon scattering in pure CdTe crystals. Islam SS; Rath S; Jain KP; Abbi SC; Julien C; Balkanski M Phys Rev B Condens Matter; 1992 Aug; 46(8):4982-4985. PubMed ID: 10004263 [No Abstract] [Full Text] [Related]