These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9993433)

  • 1. Infrared absorption of deep defects in molecular-beam-epitaxial GaAs layers grown at 200 degreesC: Observation of an EL2-like defect.
    Manasreh MO; Look DC; Evans KR; Stutz CE
    Phys Rev B Condens Matter; 1990 May; 41(14):10272-10275. PubMed ID: 9993433
    [No Abstract]   [Full Text] [Related]  

  • 2. Infrared absorption properties of the EL2 and the isolated AsGa defects in neutron-transmutation-doped GaAs: Generation of an EL2-like defect.
    Manasreh MO; Fischer DW
    Phys Rev B Condens Matter; 1989 Feb; 39(5):3239-3249. PubMed ID: 9948624
    [No Abstract]   [Full Text] [Related]  

  • 3. Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a dense EL2-like band.
    Look DC; Walters DC; Manasreh MO; Sizelove JR; Stutz CE; Evans KR
    Phys Rev B Condens Matter; 1990 Aug; 42(6):3578-3581. PubMed ID: 9995870
    [No Abstract]   [Full Text] [Related]  

  • 4. First principles study of the ternary complex model of EL2 defect in GaAs saturable absorber.
    Li D; Yang M; Cai Y; Zhao S; Feng Y
    Opt Express; 2012 Mar; 20(6):6258-66. PubMed ID: 22418509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of quenched hopping conduction in GaAs layers grown by molecular-beam epitaxy at 200 degreesC.
    Look DC; Fang ZQ; Sizelove JR
    Phys Rev B Condens Matter; 1993 Jan; 47(3):1441-1443. PubMed ID: 10006157
    [No Abstract]   [Full Text] [Related]  

  • 6. Photothermal deflection studies of GaAs epitaxial layers.
    George NA; Vallabhan CP; Nampoori VP; Radhakrishnan P
    Appl Opt; 2002 Aug; 41(24):5179-84. PubMed ID: 12206230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picosecond photorefractive beam coupling in GaAs.
    Valley GC; Smirl AL; Klein MB; Bohnert K; Boggess TF
    Opt Lett; 1986 Oct; 11(10):647-9. PubMed ID: 19738716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-acoustic-wave study of defects in GaAs grown by molecular-beam epitaxy at 220 degreesC.
    Khachaturyan K; Weber ER; White RM
    Phys Rev B Condens Matter; 1992 Feb; 45(8):4258-4265. PubMed ID: 10002040
    [No Abstract]   [Full Text] [Related]  

  • 9. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.
    Gai B; Sun Y; Lim H; Chen H; Faucher J; Lee ML; Yoon J
    ACS Nano; 2017 Jan; 11(1):992-999. PubMed ID: 28075560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of substrate orientation on the structural quality of GaAs nanowires in molecular beam epitaxy.
    Zhang Z; Shi SX; Chen PP; Lu W; Zou J
    Nanotechnology; 2015 Jan; 26(25):255601. PubMed ID: 26024290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron-irradiation effects on the infrared absorption properties of the EL2 defect in GaAs.
    Manasreh MO; Fischer DW
    Phys Rev B Condens Matter; 1989 Feb; 39(6):3871-3874. PubMed ID: 9948711
    [No Abstract]   [Full Text] [Related]  

  • 12. Neutron irradiation effects on the infrared absorption of the EL2 defect in GaAs: New interpretation for the intracenter transition.
    Manasreh MO; Fischer DW; Covington BC
    Phys Rev B Condens Matter; 1988 Apr; 37(11):6567-6570. PubMed ID: 9943919
    [No Abstract]   [Full Text] [Related]  

  • 13. GaAs nanowires with oxidation-proof arsenic capping for the growth of an epitaxial shell.
    Guan X; Becdelievre J; Benali A; Botella C; Grenet G; Regreny P; Chauvin N; Blanchard NP; Jaurand X; Saint-Girons G; Bachelet R; Gendry M; Penuelas J
    Nanoscale; 2016 Aug; 8(34):15637-44. PubMed ID: 27513669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epitaxial Fe3Si films on GaAs(100) substrates by means of electron beam evaporation.
    Thomas J; Schumann J; Vinzelberg H; Arushanov E; Engelhard R; Schmidt OG; Gemming T
    Nanotechnology; 2009 Jun; 20(23):235604. PubMed ID: 19451681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fourier-transform infrared-absorption studies of intracenter transitions in the EL2 level in semi-insulating bulk GaAs grown with the liquid-encapsulated Czochralski technique.
    Manasreh MO; Covington BC
    Phys Rev B Condens Matter; 1987 Feb; 35(5):2524-2527. PubMed ID: 9941719
    [No Abstract]   [Full Text] [Related]  

  • 16. Photoenhancement and photoquenching of the 0.68-eV EL2 photoluminescence emission in GaAs grown by molecular-beam epitaxy at low temperatures.
    Yu PW; Capano MA; D'Agostino AT; Stutz CE
    Phys Rev B Condens Matter; 1994 Jun; 49(23):16398-16402. PubMed ID: 10010790
    [No Abstract]   [Full Text] [Related]  

  • 17. First observation of the EL2 lattice defect in indium gallium arsenide grown by molecular-beam epitaxy.
    Irvine AC; Palmer DW
    Phys Rev Lett; 1992 Apr; 68(14):2168-2171. PubMed ID: 10045324
    [No Abstract]   [Full Text] [Related]  

  • 18. Deep-level defects in n-type GaAsBi alloys grown by molecular beam epitaxy at low temperature and their influence on optical properties.
    Gelczuk Ł; Kopaczek J; Rockett TBO; Richards RD; Kudrawiec R
    Sci Rep; 2017 Oct; 7(1):12824. PubMed ID: 28993673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pump-probe surface photovoltage spectroscopy measurements on semiconductor epitaxial layers.
    Jana D; Porwal S; Sharma TK; Kumar S; Oak SM
    Rev Sci Instrum; 2014 Apr; 85(4):043909. PubMed ID: 24784628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aligned defect complex containing carbon and hydrogen in as-grown GaAs epitaxial layers.
    Cheng Y; Stavola M; Abernathy CR; Pearton SJ; Hobson WS
    Phys Rev B Condens Matter; 1994 Jan; 49(4):2469-2476. PubMed ID: 10011080
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.