These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9993854)

  • 1. Radiative and nonradiative recombination of bound excitons in GaP:N. II. Nonlinear behavior of emission intensity versus excitation power of bound excitons due to exciton transfer.
    Dou K; Zhang X; Hong Q
    Phys Rev B Condens Matter; 1990 Jan; 41(3):1382-1385. PubMed ID: 9993854
    [No Abstract]   [Full Text] [Related]  

  • 2. Comment on "Radiative and nonradiative recombination of bound excitons in GaP:N. I. Temperature behavior of zero-phonon line and phonon sidebands of bound excitons" and " Radiative and nonradiative recombination of bound excitons in GaP:N. IV. Formation of phonon sidebands of bound excitons".
    Ge W; Zhang Y; Mi D; Zheng J; Yan B; Wu B
    Phys Rev B Condens Matter; 1992 Aug; 46(8):5004-5005. PubMed ID: 10004269
    [No Abstract]   [Full Text] [Related]  

  • 3. Reply to "Comment on 'Radiative and nonradiative recombination of bound excitons in GaP:N. I. Temperature behavior of zero-phonon line and phonon sidebands of bound excitons' and 'Radiative and nonradiative recombination of bound excitons in GaP:N. IV. Formation of phonon sidebands of bound excitons' ".
    Zhang X; Dou K; Hong Q
    Phys Rev B Condens Matter; 1992 Aug; 46(8):5006-5007. PubMed ID: 10004270
    [No Abstract]   [Full Text] [Related]  

  • 4. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiative and nonradiative recombination of bound excitons in GaP:N. I. Temperature behavior of zero-phonon line and phonon sidebands of bound excitons.
    Zhang X; Dou K; Hong Q; Balkanski M
    Phys Rev B Condens Matter; 1990 Jan; 41(3):1376-1381. PubMed ID: 9993853
    [No Abstract]   [Full Text] [Related]  

  • 6. Comment on "Radiative and nonradiative recombination of bound excitons in GaP:N. I. Temperature behavior of zero-phonon line and phonon sidebands of bound excitons".
    Sturge MD; Cohen E
    Phys Rev B Condens Matter; 1992 May; 45(19):11370-11371. PubMed ID: 10001072
    [No Abstract]   [Full Text] [Related]  

  • 7. Radiative and nonradiative recombination of bound excitons in GaP:N. III. Reverse tunneling of bound excitons.
    Hong Q; Dou K; Zhang X
    Phys Rev B Condens Matter; 1990 Jan; 41(3):1386-1389. PubMed ID: 9993855
    [No Abstract]   [Full Text] [Related]  

  • 8. Radiative and nonradiative recombination of bound excitons in GaP:N. IV. Formation of phonon sidebands of bound excitons.
    Hong Q; Zhang X; Dou K
    Phys Rev B Condens Matter; 1990 Feb; 41(5):2931-2935. PubMed ID: 9994061
    [No Abstract]   [Full Text] [Related]  

  • 9. Theory of antibunching of photon emission I.
    Seki K; Tachiya M
    J Chem Phys; 2009 Jan; 130(2):024706. PubMed ID: 19154049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model of hopping excitons in GaInNAs: simulations of sharp lines in micro-photoluminescence spectra and their dependence on the excitation power and temperature.
    Baranowski M; Latkowska M; Kudrawiec R; Misiewicz J
    J Phys Condens Matter; 2011 May; 23(20):205804. PubMed ID: 21540495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitons and Biexciton Dynamics in Single CsPbBr
    Li B; Huang H; Zhang G; Yang C; Guo W; Chen R; Qin C; Gao Y; Biju VP; Rogach AL; Xiao L; Jia S
    J Phys Chem Lett; 2018 Dec; 9(24):6934-6940. PubMed ID: 30484306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exciton Dissociation in CdSe/CdTe Heterostructure Nanorods.
    Wang S; Wang LW
    J Phys Chem Lett; 2011 Jan; 2(1):1-6. PubMed ID: 26295205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Multiple Excitons in Ag2S Quantum Dots: Single High-Energy versus Multiple-Photon Excitation.
    Sun J; Yu W; Usman A; Isimjan TT; DGobbo S; Alarousu E; Takanabe K; Mohammed OF
    J Phys Chem Lett; 2014 Feb; 5(4):659-65. PubMed ID: 26270833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-II heteronanosheets.
    Wu K; Li Q; Jia Y; McBride JR; Xie ZX; Lian T
    ACS Nano; 2015 Jan; 9(1):961-8. PubMed ID: 25548944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton dynamics and annihilation in WS2 2D semiconductors.
    Yuan L; Huang L
    Nanoscale; 2015 Apr; 7(16):7402-8. PubMed ID: 25826397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultralong-range polaron-induced quenching of excitons in isolated conjugated polymers.
    Bolinger JC; Traub MC; Adachi T; Barbara PF
    Science; 2011 Feb; 331(6017):565-7. PubMed ID: 21292973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exciton characteristics in graphene epoxide.
    Zhu X; Su H
    ACS Nano; 2014 Feb; 8(2):1284-9. PubMed ID: 24460400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of Radiative Exciton Recombination by Charge Transfer Induced Surface Dipoles in MoS2 and WS2 Monolayers.
    Hu P; Ye J; He X; Du K; Zhang KK; Wang X; Xiong Q; Liu Z; Jiang H; Kloc C
    Sci Rep; 2016 Apr; 6():24105. PubMed ID: 27053440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton Recombination, Energy-, and Charge Transfer in Single- and Multilayer Quantum-Dot Films on Silver Plasmonic Resonators.
    Shin T; Cho KS; Yun DJ; Kim J; Li XS; Moon ES; Baik CW; Il Kim S; Kim M; Choi JH; Park GS; Shin JK; Hwang S; Jung TS
    Sci Rep; 2016 May; 6():26204. PubMed ID: 27184469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.