These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9993857)

  • 1. Theoretical and experimental results for p-type GaAs electrolyte electroreflectance.
    Batchelor RA; Brown AC; Hamnett A
    Phys Rev B Condens Matter; 1990 Jan; 41(3):1401-1412. PubMed ID: 9993857
    [No Abstract]   [Full Text] [Related]  

  • 2. Modeling of electrolyte electroreflectance of heavily doped n-type GaAs.
    Gilman JM; Hutton R; Hamnett A; Peter LM
    Phys Rev B Condens Matter; 1993 May; 47(20):13453-13461. PubMed ID: 10005653
    [No Abstract]   [Full Text] [Related]  

  • 3. Electrolyte electroreflectance study of the band offset in a GaAs/Ga0.69Al0.31As superlattice.
    Raccah PM; Garland JW; Zhang Z; Chambers FA; Vezzetti DJ
    Phys Rev B Condens Matter; 1987 Sep; 36(8):4271-4278. PubMed ID: 9943407
    [No Abstract]   [Full Text] [Related]  

  • 4. Electroreflectance imaging of gold-H3PO4 supercapacitors. Part I: experimental methodology.
    Maize K; Kundu A; Xiong G; Saviers K; Fisher TS; Shakouri A
    Analyst; 2016 Feb; 141(4):1448-61. PubMed ID: 26817992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study of electroreflectance spectrum and Franz-Keldysh effect at metal-GaAs interfaces].
    Wang B; Xu XX; Qin Z; Song N; Zhang CZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1701-4. PubMed ID: 18975783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Franz-Keldysh and band-filling effects in the electroreflectance of highly doped p-type GaAs.
    Gilman JM; Hamnett A; Batchelor RA
    Phys Rev B Condens Matter; 1992 Nov; 46(20):13363-13370. PubMed ID: 10003383
    [No Abstract]   [Full Text] [Related]  

  • 7. Modulation spectroscopy study of the effects of growth interruptions on the interfaces of GaAsSb/GaAs multiple quantum wells.
    Hsu HP; Sitarek P; Huang YS; Liu PW; Lin JM; Lin HH; Tiong KK
    J Phys Condens Matter; 2006 Jul; 18(26):5927-35. PubMed ID: 21690808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stark-ladder behavior of the X levels in a type-II GaAs/AlAs superlattice measured using electroreflectance spectroscopy.
    Shields AJ; Klipstein PC; Skolnick MS; Smith GW; Whitehouse CR
    Phys Rev B Condens Matter; 1990 Sep; 42(9):5879-5882. PubMed ID: 9996177
    [No Abstract]   [Full Text] [Related]  

  • 9. Photoreactions at the n-type-WSe2-electrolyte interface: Study by electrolyte electroreflectance and photocurrent transient measurements.
    Salvador P; Pujadas M; Campet G
    Phys Rev B Condens Matter; 1988 Nov; 38(14):9881-9888. PubMed ID: 9945811
    [No Abstract]   [Full Text] [Related]  

  • 10. Electroreflectance detection of resonant coupling between Wannier-Stark localization states in a GaAs/AlAs superlattice.
    Nakayama M; Tanaka I; Nishimura H; Kawashima K; Fujiwara K
    Phys Rev B Condens Matter; 1991 Sep; 44(11):5935-5938. PubMed ID: 9998448
    [No Abstract]   [Full Text] [Related]  

  • 11. Electroreflectance intensity for resonant coupling between Wannier-Stark localization states in a GaAs/AlAs superlattice.
    Tanaka I; Nakayama M; Nishimura H; Kawashima K; Fujiwara K
    Phys Rev B Condens Matter; 1992 Sep; 46(12):7656-7661. PubMed ID: 10002506
    [No Abstract]   [Full Text] [Related]  

  • 12. Variations in stoichiometry in Hg(1-x) Cd(x) Te using electrolyte electroreflectance: a topographical investigation.
    Vanier PE; Pollak FH; Raccah PM
    Appl Opt; 1977 Nov; 16(11):2858-60. PubMed ID: 20174256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal submonolayers on Hg-Zn-Te alloys: Electrochemical and electrolyte electroreflectance studies.
    Nguyen Van Huong C ; Lemasson P
    Phys Rev B Condens Matter; 1989 Aug; 40(5):3021-3027. PubMed ID: 9992236
    [No Abstract]   [Full Text] [Related]  

  • 14. Observation of transitions between electronic states at the (111) A-face of CdTe by electrolyte electroreflectance.
    Raccah PM; Garland JW; Zhang Z; Abels LL; Ugur S; Mioc S; Brown M
    Phys Rev Lett; 1985 Sep; 55(12):1323-1326. PubMed ID: 10031787
    [No Abstract]   [Full Text] [Related]  

  • 15. Deep-level defects in n-type GaAsBi alloys grown by molecular beam epitaxy at low temperature and their influence on optical properties.
    Gelczuk Ł; Kopaczek J; Rockett TBO; Richards RD; Kudrawiec R
    Sci Rep; 2017 Oct; 7(1):12824. PubMed ID: 28993673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different epitaxial structures on GaAs photoemission.
    Zou J; Zhang Y; Deng W; Jin J; Chang B
    Appl Opt; 2011 Sep; 50(27):5228-34. PubMed ID: 21947040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrodeposition of flattened Cu nanoclusters on a p-GaAs(001) electrode monitored by in situ optical second harmonic generation.
    Yagi I; Idojiri S; Awatani T; Uosaki K
    J Phys Chem B; 2005 Mar; 109(11):5021-32. PubMed ID: 16863162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of exponential doping structure on the performance of GaAs photocathodes.
    Niu J; Zhang Y; Chang B; Yang Z; Xiong Y
    Appl Opt; 2009 Oct; 48(29):5445-50. PubMed ID: 19823224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical nanostructuring of n-GaAs photoelectrodes.
    Ritenour AJ; Levinrad S; Bradley C; Cramer RC; Boettcher SW
    ACS Nano; 2013 Aug; 7(8):6840-9. PubMed ID: 23869623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local structure of isolated positively charged muonium as an analog for the hydrogen ion in p-type GaAs.
    Schultz BE; Chow KH; Hitti B; Kiefl RF; Lichti RL; Cox SF
    Phys Rev Lett; 2005 Aug; 95(8):086404. PubMed ID: 16196878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.