These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9993968)

  • 1. Bethe-ansatz wave function, momentum distribution, and spin correlation in the one-dimensional strongly correlated Hubbard model.
    Ogata M; Shiba H
    Phys Rev B Condens Matter; 1990 Feb; 41(4):2326-2338. PubMed ID: 9993968
    [No Abstract]   [Full Text] [Related]  

  • 2. Spectral function of the one-dimensional Hubbard model away from half filling.
    Benthien H; Gebhard F; Jeckelmann E
    Phys Rev Lett; 2004 Jun; 92(25 Pt 1):256401. PubMed ID: 15245039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of the one-dimensional Hubbard model: cellular dynamical mean-field description.
    Go A; Jeon GS
    J Phys Condens Matter; 2009 Dec; 21(48):485602. PubMed ID: 21832527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact Bethe Ansatz Spectrum of a Tight-Binding Chain with Dephasing Noise.
    Medvedyeva MV; Essler FH; Prosen T
    Phys Rev Lett; 2016 Sep; 117(13):137202. PubMed ID: 27715082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bethe ansatz for the one-dimensional boson Hubbard model.
    Krauth W
    Phys Rev B Condens Matter; 1991 Nov; 44(17):9772-9775. PubMed ID: 9998977
    [No Abstract]   [Full Text] [Related]  

  • 6. Spectral properties near the Mott transition in the one-dimensional Hubbard model.
    Kohno M
    Phys Rev Lett; 2010 Sep; 105(10):106402. PubMed ID: 20867533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bound states in the continuum realized in the one-dimensional two-particle Hubbard model with an impurity.
    Zhang JM; Braak D; Kollar M
    Phys Rev Lett; 2012 Sep; 109(11):116405. PubMed ID: 23005657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong-coupling expansion of the thermodynamic Bethe-ansatz equations for the one-dimensional Hubbard model.
    Ha ZN
    Phys Rev B Condens Matter; 1992 Nov; 46(19):12205-12218. PubMed ID: 10003133
    [No Abstract]   [Full Text] [Related]  

  • 9. Exact Liouvillian Spectrum of a One-Dimensional Dissipative Hubbard Model.
    Nakagawa M; Kawakami N; Ueda M
    Phys Rev Lett; 2021 Mar; 126(11):110404. PubMed ID: 33798340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong antiferromagnetic correlation effects on the momentum distribution function of the Hubbard model.
    Avella A; Mancini F
    J Phys Condens Matter; 2009 Jun; 21(25):254209. PubMed ID: 21828433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems.
    Andersen ME; Dehkharghani AS; Volosniev AG; Lindgren EJ; Zinner NT
    Sci Rep; 2016 Jun; 6():28362. PubMed ID: 27324113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hopping modulation in a one-dimensional Fermi-Hubbard Hamiltonian.
    Massel F; Leskinen MJ; Törmä P
    Phys Rev Lett; 2009 Aug; 103(6):066404. PubMed ID: 19792589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ground and excited states of spinor fermi gases in tight waveguides and the Lieb-Liniger-Heisenberg model.
    Girardeau MD
    Phys Rev Lett; 2006 Nov; 97(21):210401. PubMed ID: 17155729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Singular forward scattering in the 2D Hubbard model and a renormalized Bethe ansatz ground state.
    Anderson PW
    Phys Rev Lett; 1990 Oct; 65(18):2306-2308. PubMed ID: 10042511
    [No Abstract]   [Full Text] [Related]  

  • 15. Spin waves in a one-dimensional spinor bose gas.
    Fuchs JN; Gangardt DM; Keilmann T; Shlyapnikov GV
    Phys Rev Lett; 2005 Oct; 95(15):150402. PubMed ID: 16241701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.
    Li Z; Chan GK
    J Chem Theory Comput; 2017 Jun; 13(6):2681-2695. PubMed ID: 28467847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical properties of the one-dimensional spin-1/2 Bose-Hubbard model near a Mott-insulator to ferromagnetic-liquid transition.
    Zvonarev MB; Cheianov VV; Giamarchi T
    Phys Rev Lett; 2009 Sep; 103(11):110401. PubMed ID: 19792352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential.
    Levinsen J; Massignan P; Bruun GM; Parish MM
    Sci Adv; 2015 Jul; 1(6):e1500197. PubMed ID: 26601220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic Bethe-ansatz equations for the Hubbard chain with an attractive interaction.
    Lee KJ; Schlottmann P
    Phys Rev B Condens Matter; 1988 Dec; 38(16):11566-11571. PubMed ID: 9946039
    [No Abstract]   [Full Text] [Related]  

  • 20. Persistent current and Drude weight for the one-dimensional Hubbard model from current lattice density functional theory.
    Akande A; Sanvito S
    J Phys Condens Matter; 2012 Feb; 24(5):055602. PubMed ID: 22248571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.