These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 9994366)
1. Far-infrared magneto-optical study of holes and electrons in zero-band-gap HgTe/Cd0.85Hg0.15Te superlattices. Dobrowolska M; Wojtowicz T; Luo H; Furdyna JK; Wu OK; Schulman JN; Meyer JR; Hoffman CA; Bartoli FJ Phys Rev B Condens Matter; 1990 Mar; 41(8):5084-5095. PubMed ID: 9994366 [No Abstract] [Full Text] [Related]
2. First-principles analysis for the modulation of energy band gap and optical characteristics in HgTe/CdTe superlattices. Laref A; Alsagri M; Alahmed ZA; Laref S RSC Adv; 2019 May; 9(29):16390-16405. PubMed ID: 35516368 [TBL] [Abstract][Full Text] [Related]
4. Magneto-optical properties of HgTe-CdTe superlattices. Meyer JR; Wagner RJ; Bartoli FJ; Hoffman CA; Dobrowolska M; Wojtowicz T; Furdyna JK; Ram-Mohan LR Phys Rev B Condens Matter; 1990 Nov; 42(14):9050-9062. PubMed ID: 9995119 [No Abstract] [Full Text] [Related]
5. Transport and optical properties of holes in p-type zero-band-gap Hg1-xZnxTe/CdTe superlattices. Choi JB; Yoo KH; Han JW; Kang TW; Meyer JR; Hoffman CA; Karczewski G; Furdyna JK; Faurie JP Phys Rev B Condens Matter; 1994 Apr; 49(16):11060-11065. PubMed ID: 10009952 [No Abstract] [Full Text] [Related]
6. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals. Livache C; Goubet N; Martinez B; Jagtap A; Qu J; Ithurria S; Silly MG; Dubertret B; Lhuillier E ACS Appl Mater Interfaces; 2018 Apr; 10(14):11880-11887. PubMed ID: 29578678 [TBL] [Abstract][Full Text] [Related]
7. Transport properties of a 3D topological insulator based on a strained high-mobility HgTe film. Kozlov DA; Kvon ZD; Olshanetsky EB; Mikhailov NN; Dvoretsky SA; Weiss D Phys Rev Lett; 2014 May; 112(19):196801. PubMed ID: 24877958 [TBL] [Abstract][Full Text] [Related]
8. Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range. Shuvaev AM; Astakhov GV; Pimenov A; Brüne C; Buhmann H; Molenkamp LW Phys Rev Lett; 2011 Mar; 106(10):107404. PubMed ID: 21469835 [TBL] [Abstract][Full Text] [Related]
11. Strain Engineering of the Band Gap of HgTe Quantum Wells Using Superlattice Virtual Substrates. Leubner P; Lunczer L; Brüne C; Buhmann H; Molenkamp LW Phys Rev Lett; 2016 Aug; 117(8):086403. PubMed ID: 27588871 [TBL] [Abstract][Full Text] [Related]
12. Band-gap-dependent electron and hole transport in p-type HgTe-CdTe superlattices. Hoffman CA; Meyer JR; Bartoli FJ; Han JW; Cook JW; Schetzina JF; Schulman JN Phys Rev B Condens Matter; 1989 Mar; 39(8):5208-5221. PubMed ID: 9948911 [No Abstract] [Full Text] [Related]
13. Optical properties of HgTe/CdTe superlattices in the normal, semimetallic, and inverted-band regimes. Yang Z; Yu Z; Lansari Y; Hwang S; Cook JW; Schetzina JF Phys Rev B Condens Matter; 1994 Mar; 49(12):8096-8108. PubMed ID: 10009574 [No Abstract] [Full Text] [Related]
14. Exciton radiative decay and homogeneous broadening in CdTe/Cd0.85Mn0.15Te multiple quantum wells. O'Neill M; Oestreich M; Rühle WW; Ashenford DE Phys Rev B Condens Matter; 1993 Sep; 48(12):8980-8985. PubMed ID: 10007117 [No Abstract] [Full Text] [Related]
15. Theoretical study of nitride short period superlattices. Gorczyca I; Suski T; Christensen NE; Svane A J Phys Condens Matter; 2018 Feb; 30(6):063001. PubMed ID: 29256446 [TBL] [Abstract][Full Text] [Related]
16. Magneto-optical determination of the HgTe-CdTe superlattice band structure. Berroir JM; Guldner Y; Vieren JP; Voos M; Faurie JP Phys Rev B Condens Matter; 1986 Jul; 34(2):891-894. PubMed ID: 9939700 [No Abstract] [Full Text] [Related]
17. Temperature dependence discontinuity of the phonon mode frequencies caused by a zero-gap state in HgCdTe alloys. Sheregii EM; Cebulski J; Marcelli A; Piccinini M Phys Rev Lett; 2009 Jan; 102(4):045504. PubMed ID: 19257441 [TBL] [Abstract][Full Text] [Related]
18. Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies. Kocaman S; Chatterjee R; Panoiu NC; McMillan JF; Yu MB; Osgood RM; Kwong DL; Wong CW Phys Rev Lett; 2009 May; 102(20):203905. PubMed ID: 19519031 [TBL] [Abstract][Full Text] [Related]
19. Metallic 1T-LixMoS2 Cocatalyst Significantly Enhanced the Photocatalytic H2 Evolution over Cd0.5Zn0.5S Nanocrystals under Visible Light Irradiation. Du H; Guo HL; Liu YN; Xie X; Liang K; Zhou X; Wang X; Xu AW ACS Appl Mater Interfaces; 2016 Feb; 8(6):4023-30. PubMed ID: 26844371 [TBL] [Abstract][Full Text] [Related]
20. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations. Kovalenko MV; Kaufmann E; Pachinger D; Roither J; Huber M; Stangl J; Hesser G; Schäffler F; Heiss W J Am Chem Soc; 2006 Mar; 128(11):3516-7. PubMed ID: 16536514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]