These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 9994378)

  • 1. Optical transitions in semiconductor superlattices with zinc-blende structure in the k.
    Luo H; Furdyna JK
    Phys Rev B Condens Matter; 1990 Mar; 41(8):5188-5196. PubMed ID: 9994378
    [No Abstract]   [Full Text] [Related]  

  • 2. Electronic structure and deep impurity levels in structure-modulated zinc-blende-wurtzite semiconductor superlattices.
    Ren SY; Dow JD
    Phys Rev B Condens Matter; 1989 Apr; 39(11):7796-7802. PubMed ID: 9947461
    [No Abstract]   [Full Text] [Related]  

  • 3. Optical response of wurtzite and zinc blende GaP nanowire arrays.
    Aghaeipour M; Anttu N; Nylund G; Berg A; Lehmann S; Pistol ME
    Opt Express; 2015 Nov; 23(23):30177-87. PubMed ID: 26698498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties.
    Nan W; Niu Y; Qin H; Cui F; Yang Y; Lai R; Lin W; Peng X
    J Am Chem Soc; 2012 Dec; 134(48):19685-93. PubMed ID: 23131103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors.
    Ikonic Z; Srivastava GP; Inkson JC
    Phys Rev B Condens Matter; 1995 Nov; 52(19):14078-14085. PubMed ID: 9980625
    [No Abstract]   [Full Text] [Related]  

  • 6. Twinning superlattices in indium phosphide nanowires.
    Algra RE; Verheijen MA; Borgström MT; Feiner LF; Immink G; van Enckevort WJ; Vlieg E; Bakkers EP
    Nature; 2008 Nov; 456(7220):369-72. PubMed ID: 19020617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-functionalization-dependent optical properties of II-VI semiconductor nanocrystals.
    Chen O; Yang Y; Wang T; Wu H; Niu C; Yang J; Cao YC
    J Am Chem Soc; 2011 Nov; 133(43):17504-12. PubMed ID: 21954890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal transition state for high-pressure zinc blende to rocksalt phase transitions.
    Miao MS; Lambrecht WR
    Phys Rev Lett; 2005 Jun; 94(22):225501. PubMed ID: 16090409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct inter-conduction-subband optical absorption of thin zinc-blende-structure-semiconductor rectangular wires.
    Lee J; Vassell MO
    Phys Rev B Condens Matter; 1990 Sep; 42(8):5274-5279. PubMed ID: 9996092
    [No Abstract]   [Full Text] [Related]  

  • 10. Anisotropic photonic properties of III-V nanowires in the zinc-blende and wurtzite phase.
    Wilhelm C; Larrue A; Dai X; Migas D; Soci C
    Nanoscale; 2012 Mar; 4(5):1446-54. PubMed ID: 22327202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical properties of zinc-blende semiconductor alloys: Effects of epitaxial strain and atomic ordering.
    Wei SH; Zunger A
    Phys Rev B Condens Matter; 1994 May; 49(20):14337-14351. PubMed ID: 10010515
    [No Abstract]   [Full Text] [Related]  

  • 12. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods.
    Kan S; Mokari T; Rothenberg E; Banin U
    Nat Mater; 2003 Mar; 2(3):155-8. PubMed ID: 12612671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-beam formation from spin-orbit interactions in zinc-blende semiconductor quantum wells.
    Berman DH; Flatté ME
    Phys Rev Lett; 2010 Oct; 105(15):157202. PubMed ID: 21230935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors.
    Ikonic Z; Srivastava GP; Inkson JC
    Phys Rev B Condens Matter; 1993 Dec; 48(23):17181-17193. PubMed ID: 10008326
    [No Abstract]   [Full Text] [Related]  

  • 15. Resonant magneto-optical spin transitions in zinc-blende and wurtzite semiconductors.
    Zorkani I; Kartheuser E
    Phys Rev B Condens Matter; 1996 Jan; 53(4):1871-1880. PubMed ID: 9983645
    [No Abstract]   [Full Text] [Related]  

  • 16. Optical study of Mn2+ intraionic transitions in zinc-blende MnTe.
    Ando K
    Phys Rev B Condens Matter; 1993 Apr; 47(15):9350-9353. PubMed ID: 10005001
    [No Abstract]   [Full Text] [Related]  

  • 17. Zener tunneling in semiconductor superlattices.
    Romanova JY; Demidov EV; Mourokh LG; Romanov YA
    J Phys Condens Matter; 2011 Aug; 23(30):305801. PubMed ID: 21747156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic structure of zinc-blende-structure semiconductor heterostructures.
    Cohen AM; Marques GE
    Phys Rev B Condens Matter; 1990 May; 41(15):10608-10621. PubMed ID: 9993469
    [No Abstract]   [Full Text] [Related]  

  • 19. Neutron-diffraction studies of zinc-blende MnTe epitaxial films and MnTe/ZnTe superlattices: The effect of strain and dilution on a strongly frustrated fcc antiferromagnet.
    Giebultowicz TM; Klosowski P; Samarth N; Luo H; Furdyna JK; Rhyne JJ
    Phys Rev B Condens Matter; 1993 Nov; 48(17):12817-12833. PubMed ID: 10007655
    [No Abstract]   [Full Text] [Related]  

  • 20. Atomic scale surface structure and morphology of InAs nanowire crystal superlattices: the effect of epitaxial overgrowth.
    Knutsson JV; Lehmann S; Hjort M; Reinke P; Lundgren E; Dick KA; Timm R; Mikkelsen A
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5748-55. PubMed ID: 25710727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.