These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 999483)

  • 1. Interstimulus interval effects on habituation of flexor withdrawal activity mediated by the functionally transected human spinal cord.
    Fuhrer MJ
    Arch Phys Med Rehabil; 1976 Dec; 57(12):577-82. PubMed ID: 999483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dishabituation of flexor withdrawal activity mediated by the functionally transected human spinal cord.
    Fuhrer MJ
    Brain Res; 1973 Dec; 63():93-102. PubMed ID: 4764323
    [No Abstract]   [Full Text] [Related]  

  • 3. Absence of local sign withdrawal in chronic human spinal cord injury.
    Schmit BD; Hornby TG; Tysseling-Mattiace VM; Benz EN
    J Neurophysiol; 2003 Nov; 90(5):3232-41. PubMed ID: 12904338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repetitive painful stimulation produces an expansion of withdrawal reflex receptive fields in humans.
    Spaich EG; Arendt-Nielsen L; Andersen OK
    Artif Organs; 2005 Mar; 29(3):224-8. PubMed ID: 15725222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of flexor reflexes by static and dynamic hip proprioceptors in chronic human spinal cord injury.
    Kim Y; Youm Y; Wu M; Schmit BD
    J Clin Neurosci; 2007 Nov; 14(11):1078-88. PubMed ID: 17719787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansion of nociceptive withdrawal reflex receptive fields in spinal cord injured humans.
    Andersen OK; Finnerup NB; Spaich EG; Jensen TS; Arendt-Nielsen L
    Clin Neurophysiol; 2004 Dec; 115(12):2798-810. PubMed ID: 15546788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials?
    Hornby TG; Rymer WZ; Benz EN; Schmit BD
    J Neurophysiol; 2003 Jan; 89(1):416-26. PubMed ID: 12522190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of long-term FES-assisted walking on intrinsic and reflex dynamic stiffness in spastic spinal-cord-injured subjects.
    Mirbagheri MM; Ladouceur M; Barbeau H; Kearney RE
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):280-9. PubMed ID: 12611365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of spinal interneuronal activity by repeated cutaneous stimulation: a possible substrate of flexor reflex habituation.
    Macdonald JF; Pearson JA
    J Neurobiol; 1979 Jan; 10(1):79-92. PubMed ID: 521811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reflex behavior during walking in incomplete spinal-cord-injured subjects.
    Jones CA; Yang JF
    Exp Neurol; 1994 Aug; 128(2):239-48. PubMed ID: 8076668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation parameter optimization for functional electrical stimulation assisted gait in human spinal cord injury using response surface methodology.
    Kim Y; Schmit BD; Youm Y
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):485-94. PubMed ID: 16488061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The intralimb coordination of the flexor reflex response is altered in chronic human spinal cord injury.
    Deutsch KM; Hornby TG; Schmit BD
    Neurosci Lett; 2005 Jun; 380(3):305-10. PubMed ID: 15862907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of muscle afferents to prolonged flexion withdrawal reflexes in human spinal cord injury.
    Hornby TG; Tysseling-Mattiace VM; Benz EN; Schmit BD
    J Neurophysiol; 2004 Dec; 92(6):3375-84. PubMed ID: 15254071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Length-tension properties of ankle muscles in chronic human spinal cord injury.
    McDonald MF; Kevin Garrison M; Schmit BD
    J Biomech; 2005 Dec; 38(12):2344-53. PubMed ID: 16214482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Habituation of skin conductance responses and flexor withdrawal activity mediated by the functionally transected human spinal cord.
    Fuhrer MJ
    Brain Res; 1972 Jul; 42(2):353-66. PubMed ID: 5050172
    [No Abstract]   [Full Text] [Related]  

  • 17. Flexor reflexes in chronic spinal cord injury triggered by imposed ankle rotation.
    Schmit BD; McKenna-Cole A; Rymer WZ
    Muscle Nerve; 2000 May; 23(5):793-803. PubMed ID: 10797404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interlimb reflex activity after spinal cord injury in man: strengthening response patterns are consistent with ongoing synaptic plasticity.
    Calancie B; Alexeeva N; Broton JG; Molano MR
    Clin Neurophysiol; 2005 Jan; 116(1):75-86. PubMed ID: 15589186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism?
    Dietz V; Grillner S; Trepp A; Hubli M; Bolliger M
    Brain; 2009 Aug; 132(Pt 8):2196-205. PubMed ID: 19460795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcement of motor evoked potentials in patients with spinal cord injury.
    Hayes KC; Allatt RD; Wolfe DL; Kasai T; Hsieh J
    Electroencephalogr Clin Neurophysiol Suppl; 1991; 43():312-29. PubMed ID: 1773771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.