These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 999634)

  • 81. Optimal design of experiments for the estimation of precise hyperbolic kinetic and binding parameters.
    Endrenyi L; Chan FY
    J Theor Biol; 1981 May; 90(2):241-63. PubMed ID: 7311580
    [No Abstract]   [Full Text] [Related]  

  • 82. Kinetic behavior of a two-enzyme membrane carrying out a consecutive set of reactions.
    Goldman R; Katchalski EP
    J Theor Biol; 1971 Aug; 32(2):243-57. PubMed ID: 5566784
    [No Abstract]   [Full Text] [Related]  

  • 83. The application of product inhibition studies to one substrate--one product enzymic reactions.
    Darvey IG
    Biochem J; 1972 Jun; 128(2):383-7. PubMed ID: 4628529
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A note on the choice of substrate concentration in enzyme kinetic experiments.
    Weiss GH; Darvey IG
    J Theor Biol; 1981 Jun; 90(3):437-9. PubMed ID: 7311585
    [No Abstract]   [Full Text] [Related]  

  • 85. Kinetics and diffusion in multienzyme systems.
    Ho SP; Kostin MD
    J Theor Biol; 1977 Feb; 64(3):421-7. PubMed ID: 839814
    [No Abstract]   [Full Text] [Related]  

  • 86. The application of the theory of Markov processes to the reversible one substrate-one intermediate-one product enzymic mechanism.
    Darvey IG; Staff PJ
    J Theor Biol; 1967 Feb; 14(2):157-72. PubMed ID: 6040857
    [No Abstract]   [Full Text] [Related]  

  • 87. THE USE OF ALTERNATIVE SUBSTRATES IN STUDYING ENZYMIC MECHANISMS INVOLVING TWO SUBSTRATES.
    FROMM HJ
    Biochim Biophys Acta; 1964 Mar; 81():413-7. PubMed ID: 14170314
    [No Abstract]   [Full Text] [Related]  

  • 88. Investigation of the H(2) Oxidation System in Rhizobium japonicum 122 DES Nodule Bacteroids.
    Emerich DW; Ruiz-Argüeso T; Russell SA; Evans HJ
    Plant Physiol; 1980 Dec; 66(6):1061-6. PubMed ID: 16661577
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Some classical errors in the kinetic analysis of enzyme reactions.
    Brocklehurst K; Topham CM
    Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):898-9. PubMed ID: 8240306
    [No Abstract]   [Full Text] [Related]  

  • 90. The evolution of enzyme kinetic power.
    Keleti T; Welch GR
    Biochem J; 1984 Oct; 223(2):299-303. PubMed ID: 6497848
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Influence of the position of the double bond in steroid substrates on the efficiency of the proton-transfer reaction by Pseudomonas testosteroni 3-oxo-steroid delta 4-delta 5-isomerase.
    Weintraub H; Baulieu EE; Alfsen A
    Biochem J; 1980 Mar; 185(3):723-32. PubMed ID: 6248031
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Kinetic parameters of the acyl-enzyme mechanism and conditions for quasi-equilibrium and for optimal catalytic characteristics.
    Brocklehurst K; Topham CM
    Biochem J; 1990 Sep; 270(2):561-3. PubMed ID: 2400403
    [No Abstract]   [Full Text] [Related]  

  • 93. Dependence of the P2-S2 stereochemical selectivity of papain on the nature of the catalytic-site chemistry. Quantification of selectivity in the catalysed hydrolysis of the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides.
    Kowlessur D; Thomas EW; Topham CM; Templeton W; Brocklehurst K
    Biochem J; 1990 Mar; 266(3):653-60. PubMed ID: 2327954
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A polyclonal antibody preparation with Michaelian catalytic properties.
    Gallacher G; Jackson CS; Searcey M; Badman GT; Goel R; Topham CM; Mellor GW; Brocklehurst K
    Biochem J; 1991 Nov; 279 ( Pt 3)(Pt 3):871-81. PubMed ID: 1953683
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Variation in the P2-S2 stereochemical selectivity towards the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides among the cysteine proteinases papain, ficin and actinidin.
    Patel M; Kayani IS; Mellor GW; Sreedharan S; Templeton W; Thomas EW; Thomas M; Brocklehurst K
    Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):553-9. PubMed ID: 1736903
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Generalized microscopic reversibility, kinetic co-operativity of enzymes and evolution.
    Ricard J
    Biochem J; 1978 Dec; 175(3):779-91. PubMed ID: 743234
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The pre-eminence of k(cat) in the manifestation of optimal enzymic activity delineated by using the Briggs-Haldane two-step irreversible kinetic model.
    Brocklehurst K; Cornish-Bowden A
    Biochem J; 1976 Oct; 159(1):165-6. PubMed ID: 999634
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Evolution of enzyme catalytic power. Characteristics of optimal catalysis evaluated for the simplest plausible kinetic model.
    Brocklehurst K
    Biochem J; 1977 Apr; 163(1):111-6. PubMed ID: 869911
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The amino-acid substituents of dipeptide substrates of cathepsin C can determine the rate-limiting steps of catalysis.
    Rubach JK; Cui G; Schneck JL; Taylor AN; Zhao B; Smallwood A; Nevins N; Wisnoski D; Thrall SH; Meek TD
    Biochemistry; 2012 Sep; 51(38):7551-68. PubMed ID: 22928782
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.