These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 999724)

  • 1. Apparent protein kinase activity in oligodendroglial chromatin after chronic morphine treatment.
    Oguri K; Lee NM; Loh HH
    Biochem Pharmacol; 1976 Nov; 25(21):2371-6. PubMed ID: 999724
    [No Abstract]   [Full Text] [Related]  

  • 2. Morphine effects of RNA synthesis in purified oligodendroglial nuclei.
    Stokes KB; Lee NM
    Proc West Pharmacol Soc; 1976; 19():48-54. PubMed ID: 996026
    [No Abstract]   [Full Text] [Related]  

  • 3. Partial purification of nuclear protein kinase from small dense nuclei of mouse brain and the effect of chronic morphine treatment.
    Hook VY; Lee NM; Loh HH
    J Neurochem; 1980 May; 34(5):1274-9. PubMed ID: 6246205
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of chronic morphine treatment on brain chromatin template activities in mice.
    Lee NM; Ho I; Loh HH
    Biochem Pharmacol; 1975 Nov; 24(21):1983-7. PubMed ID: 1212249
    [No Abstract]   [Full Text] [Related]  

  • 5. Possible nuclear protein kinase regulation of homologous ribonucleic acid polymerases from small dense nuclei of mouse brain during morphine tolerance-dependence. Involvement of cyclic 3',5'-adenosine monophosphate.
    Hook VY; Stokes KB; Lee NM; Loh HH
    Biochem Pharmacol; 1981 Aug; 30(16):2313-8. PubMed ID: 6271139
    [No Abstract]   [Full Text] [Related]  

  • 6. Increase in [3H]nitrendipine binding sites in the brain in morphine-tolerant mice.
    Ramkumar V; El-Fakahany EE
    Eur J Pharmacol; 1984 Jul; 102(2):371-2. PubMed ID: 6090166
    [No Abstract]   [Full Text] [Related]  

  • 7. Phosphorylation and methylation of chromatin proteins from mouse brain nuclei.
    Lee NM; Loh HH
    J Neurochem; 1977 Sep; 29(3):547-50. PubMed ID: 894309
    [No Abstract]   [Full Text] [Related]  

  • 8. Alteration of brain chromatin and nuclear synthetic activity in morphine-tolerant rats.
    Sprague GL; Fong DW; Castles TR
    Res Commun Chem Pathol Pharmacol; 1978 Mar; 19(3):553-6. PubMed ID: 653111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lewis and Fischer rat strains display differences in biochemical, electrophysiological and behavioral parameters: studies in the nucleus accumbens and locus coeruleus of drug naive and morphine-treated animals.
    Guitart X; Kogan JH; Berhow M; Terwilliger RZ; Aghajanian GK; Nestler EJ
    Brain Res; 1993 May; 611(1):7-17. PubMed ID: 8518951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mu-Opioid receptor internalization-dependent and -independent mechanisms of the development of tolerance to mu-opioid receptor agonists: Comparison between etorphine and morphine.
    Narita M; Suzuki M; Narita M; Niikura K; Nakamura A; Miyatake M; Yajima Y; Suzuki T
    Neuroscience; 2006; 138(2):609-19. PubMed ID: 16417975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of opiates on endogenous phosphorylation of proteins in the synaptic plasma membranes of rat striatum.
    Clouet DH; O'Callaghan JP; Williams N
    Prog Clin Biol Res; 1979; 27():107-21. PubMed ID: 424430
    [No Abstract]   [Full Text] [Related]  

  • 12. Size and density of oligodendroglial nuclei in rats with CCl4-induced liver disease.
    Diemer NH
    Neurobiology; 1975 Aug; 5(4):197-206. PubMed ID: 1178105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug interactions with cyclic nucleotide and protein phosphorylation systems.
    Sieghart W; Strombom U; Walter U; Greengard P
    Prog Clin Biol Res; 1979; 27():123-34. PubMed ID: 218228
    [No Abstract]   [Full Text] [Related]  

  • 14. Chronic morphine treatment decreases the Cav1.3 subunit of the L-type calcium channel.
    Haller VL; Bernstein MA; Welch SP
    Eur J Pharmacol; 2008 Jan; 578(2-3):101-7. PubMed ID: 18048029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hydroxylamine on the consequences of long-lasting administration of morphine in mice. II. Time course of the hydroxylamine effect on morphine tolerance.
    Reinis S
    Arch Int Pharmacodyn Ther; 1975 Jun; 215(2):230-7. PubMed ID: 1164089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of matrix metalloproteinase-9 in the development of morphine tolerance.
    Nakamoto K; Kawasaki S; Kobori T; Fujita-Hamabe W; Mizoguchi H; Yamada K; Nabeshima T; Tokuyama S
    Eur J Pharmacol; 2012 May; 683(1-3):86-92. PubMed ID: 22445883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glial-restricted precursors: patterns of expression of opioid receptors and relationship to human immunodeficiency virus-1 Tat and morphine susceptibility in vitro.
    Buch SK; Khurdayan VK; Lutz SE; Knapp PE; El-Hage N; Hauser KF
    Neuroscience; 2007 Jun; 146(4):1546-54. PubMed ID: 17478053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyamines alter the phosphorylation pattern of chromatin proteins by endogenous protein kinases.
    Hara T; Takahashi K; Yamamoto M; Kisaki H; Endo H
    Biochem Biophys Res Commun; 1982 May; 106(1):131-8. PubMed ID: 7103977
    [No Abstract]   [Full Text] [Related]  

  • 19. Calcium/calmodulin-dependent protein kinase II supports morphine antinociceptive tolerance by phosphorylation of glycosylated phosducin-like protein.
    Sánchez-Blázquez P; Rodríguez-Muñoz M; Montero C; de la Torre-Madrid E; Garzón J
    Neuropharmacology; 2008 Feb; 54(2):319-30. PubMed ID: 18006024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the origin of oligodendrocytes.
    Choi BH
    Yonsei Med J; 1985; 26(2):143-9. PubMed ID: 3832655
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.