These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9997809)

  • 1. Intersubband absorption line broadening in semiconductor quantum wells: Nonparabolicity contribution.
    Zaluzny M
    Phys Rev B Condens Matter; 1991 Feb; 43(5):4511-4514. PubMed ID: 9997809
    [No Abstract]   [Full Text] [Related]  

  • 2. Interplay of collective excitations in quantum-well intersubband resonances.
    Li J; Ning CZ
    Phys Rev Lett; 2003 Aug; 91(9):097401. PubMed ID: 14525208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonparabolicity of size-quantized subbands of bilayer semiconductor quantum wells with heterojunction.
    Vovk IA; Litvin AP; Ushakova EV; Cherevkov SA; Fedorov AV; Rukhlenko ID
    Opt Express; 2020 Jan; 28(2):1657-1664. PubMed ID: 32121873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective-mass-mismatch-induced intersubband absorption line broadening in semiconductor quantum wells.
    Ikonic Z; Milanovic V; Tjapkin D; Pajevic S
    Phys Rev B Condens Matter; 1988 Feb; 37(6):3097-3100. PubMed ID: 9944891
    [No Abstract]   [Full Text] [Related]  

  • 5. Consequences of subband nonparabolicity on intersubband excitations in p-doped GaAs/AlxGa1-xAs quantum wells.
    Kirchner M; Schüller C; Kraus J; Schaack G; Panzlaff K; Weimann G
    Phys Rev B Condens Matter; 1993 Apr; 47(15):9706-9709. PubMed ID: 10005041
    [No Abstract]   [Full Text] [Related]  

  • 6. Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells.
    Sirtori C; Capasso F; Faist J; Scandolo S
    Phys Rev B Condens Matter; 1994 Sep; 50(12):8663-8674. PubMed ID: 9974886
    [No Abstract]   [Full Text] [Related]  

  • 7. Fano signatures in the intersubband terahertz response of optically excited semiconductor quantum wells.
    Golde D; Wagner M; Stehr D; Schneider H; Helm M; Andrews AM; Roch T; Strasser G; Kira M; Koch SW
    Phys Rev Lett; 2009 Mar; 102(12):127403. PubMed ID: 19392323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terahertz nonlinear optics with strained p-type quantum wells.
    Citrin DS
    Opt Lett; 2001 Apr; 26(8):554-6. PubMed ID: 18040383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bound-free intersubband absorption in p-type doped semiconductor quantum wells.
    Tadic M; Ikonic Z
    Phys Rev B Condens Matter; 1995 Sep; 52(11):8266-8275. PubMed ID: 9979826
    [No Abstract]   [Full Text] [Related]  

  • 10. Theory of normal-incidence absorption for the intersubband transition in n-type indirect-gap semiconductor quantum wells.
    Xu W; Fu Y; Willander M; Shen SC
    Phys Rev B Condens Matter; 1994 May; 49(19):13760-13766. PubMed ID: 10010321
    [No Abstract]   [Full Text] [Related]  

  • 11. Ultrafast dynamics of intersubband excitations in a quasi-two-dimensional hole gas.
    Kaindl RA; Wurm M; Reimann K; Woerner M; Elsaesser T; Miesner C; Brunner K; Abstreiter G
    Phys Rev Lett; 2001 Feb; 86(6):1122-5. PubMed ID: 11178025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random approach to determine the broadening of intersubband and interband transitions in (In)GaN/Al(In)N quantum wells.
    Gladysiewicz M; Kudrawiec R
    J Phys Condens Matter; 2010 Dec; 22(48):485801. PubMed ID: 21406756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-photon lasers based on intersubband transitions in semiconductor quantum wells.
    Ning CZ
    Phys Rev Lett; 2004 Oct; 93(18):187403. PubMed ID: 15525208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical two-dimensional fourier transform spectroscopy of semiconductor quantum wells.
    Cundiff ST; Zhang T; Bristow AD; Karaiskaj D; Dai X
    Acc Chem Res; 2009 Sep; 42(9):1423-32. PubMed ID: 19555068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrally selective thermal radiation based on intersubband transitions and photonic crystals.
    Asano T; Mochizuki K; Yamaguchi M; Chaminda M; Noda S
    Opt Express; 2009 Oct; 17(21):19190-203. PubMed ID: 20372656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Line shapes of intersubband and excitonic recombination in quantum wells: Influence of final-state interaction, statistical broadening, and momentum conservation.
    Christen J; Bimberg D
    Phys Rev B Condens Matter; 1990 Oct; 42(11):7213-7219. PubMed ID: 9994849
    [No Abstract]   [Full Text] [Related]  

  • 17. Intersubband transition in lattice-matched BGaN/AlN quantum well structures with high absorption coefficients.
    Park SH; Ahn D; Park CY
    Opt Express; 2017 Feb; 25(4):3143-3152. PubMed ID: 28241530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Twisted-light-induced intersubband transitions in quantum wells at normal incidence.
    Sbierski B; Quinteiro GF; Tamborenea PI
    J Phys Condens Matter; 2013 Sep; 25(38):385301. PubMed ID: 23988693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nonparabolicity in GaAs/Ga1-xAlxAs semiconductor quantum wells.
    Yoo KH; Ram-Mohan LR; Nelson DF
    Phys Rev B Condens Matter; 1989 Jun; 39(17):12808-12813. PubMed ID: 9948154
    [No Abstract]   [Full Text] [Related]  

  • 20. Band nonparabolicity effects in semiconductor quantum wells.
    Nelson DF; Miller RC; Kleinman DA
    Phys Rev B Condens Matter; 1987 May; 35(14):7770-7773. PubMed ID: 9941101
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.