These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 9998098)

  • 1. Molecular-dynamics simulation of thermal conductivity in amorphous silicon.
    Lee YH; Biswas R; Soukoulis CM; Wang CZ; Chan CT; Ho KM
    Phys Rev B Condens Matter; 1991 Mar; 43(8):6573-6580. PubMed ID: 9998098
    [No Abstract]   [Full Text] [Related]  

  • 2. Thermal properties of amorphous/crystalline silicon superlattices.
    France-Lanord A; Merabia S; Albaret T; Lacroix D; Termentzidis K
    J Phys Condens Matter; 2014 Sep; 26(35):355801. PubMed ID: 25105883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity and specific heat of thin-film amorphous silicon.
    Zink BL; Pietri R; Hellman F
    Phys Rev Lett; 2006 Feb; 96(5):055902. PubMed ID: 16486955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beating the amorphous limit in thermal conductivity by superlattices design.
    Mizuno H; Mossa S; Barrat JL
    Sci Rep; 2015 Sep; 5():14116. PubMed ID: 26374147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From amorphous to nanocrystalline: the effect of nanograins in an amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films.
    Kearney BT; Jugdersuren B; Queen DR; Metcalf TH; Culbertson JC; Desario PA; Stroud RM; Nemeth W; Wang Q; Liu X
    J Phys Condens Matter; 2018 Feb; 30(8):085301. PubMed ID: 29283107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide.
    Lv W; Henry A
    Sci Rep; 2016 Oct; 6():35720. PubMed ID: 27767082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystalline-Amorphous Silicon Nanocomposites with Reduced Thermal Conductivity for Bulk Thermoelectrics.
    Miura A; Zhou S; Nozaki T; Shiomi J
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13484-9. PubMed ID: 26046688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the thermal conductivity along an individual silicon nanowire by selective helium ion irradiation.
    Zhao Y; Liu D; Chen J; Zhu L; Belianinov A; Ovchinnikova OS; Unocic RR; Burch MJ; Kim S; Hao H; Pickard DS; Li B; Thong JTL
    Nat Commun; 2017 Jun; 8():15919. PubMed ID: 28653663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropy of the thermal conductivity in a crystalline polymer: reverse nonequilibrium molecular dynamics simulation of the delta phase of syndiotactic polystyrene.
    Rossinsky E; Müller-Plathe F
    J Chem Phys; 2009 Apr; 130(13):134905. PubMed ID: 19355778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusually High and Anisotropic Thermal Conductivity in Amorphous Silicon Nanostructures.
    Kwon S; Zheng J; Wingert MC; Cui S; Chen R
    ACS Nano; 2017 Mar; 11(3):2470-2476. PubMed ID: 28117979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonequilibrium molecular dynamics methods for computing the thermal conductivity: application to amorphous polymers.
    Terao T; Lussetti E; Müller-Plathe F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):057701. PubMed ID: 17677201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity reduction through isotope substitution in nanomaterials: predictions from an analytical classical model and nonequilibrium molecular dynamics simulations.
    Balasubramanian G; Puri IK; Böhm MC; Leroy F
    Nanoscale; 2011 Sep; 3(9):3714-20. PubMed ID: 21792432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations.
    Mahajan SS; Subbarayan G; Sammakia BG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056701. PubMed ID: 18233784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Chain Morphology and Stiffness in Thermal Conductivity of Amorphous Polymers.
    Zhang T; Luo T
    J Phys Chem B; 2016 Feb; 120(4):803-12. PubMed ID: 26751002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics study of interfacial thermal transport between silicene and substrates.
    Zhang J; Hong Y; Tong Z; Xiao Z; Bao H; Yue Y
    Phys Chem Chem Phys; 2015 Oct; 17(37):23704-10. PubMed ID: 26266456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of the effects of temperature and structural arrangements on the thermal conductivity and thermal diffusivity of tropocollagen-hydroxyapatite interfaces.
    Qu T; Tomar V
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():28-38. PubMed ID: 24656349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonequilibrium molecular dynamics calculation of the thermal conductivity of amorphous polyamide-6,6.
    Lussetti E; Terao T; Müller-Plathe F
    J Phys Chem B; 2007 Oct; 111(39):11516-23. PubMed ID: 17824639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A density-driven phase transition between semiconducting and metallic polyamorphs of silicon.
    McMillan PF; Wilson M; Daisenberger D; Machon D
    Nat Mater; 2005 Sep; 4(9):680-4. PubMed ID: 16113681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chain conformation-dependent thermal conductivity of amorphous polymer blends: the impact of inter- and intra-chain interactions.
    Wei X; Zhang T; Luo T
    Phys Chem Chem Phys; 2016 Nov; 18(47):32146-32154. PubMed ID: 27849076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropy of the thermal conductivity of stretched amorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations.
    Algaer EA; Alaghemandi M; Böhm MC; Müller-Plathe F
    J Phys Chem B; 2009 Nov; 113(44):14596-603. PubMed ID: 19863137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.