These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 999835)

  • 1. Energetics of triosephosphate isomerase: the appearance of solvent tritium in substrate glyceraldehyde 3-phosphate and in product.
    Fletcher SJ; Herlihy JM; Albery WJ; Knowles JR
    Biochemistry; 1976 Dec; 15(25):5612-7. PubMed ID: 999835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of triosephosphate isomerase: the appearance of solvent tritium in substrate dihydroxyacetone phosphate and in product.
    Maister SG; Pett CP; Albery WJ; Knowles JR
    Biochemistry; 1976 Dec; 15(25):5607-12. PubMed ID: 999834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction of triosephosphate isomerase with L-glyceraldehyde 3-phosphate and triose 1,2-enediol 3-phosphate.
    Richard JP
    Biochemistry; 1985 Feb; 24(4):949-53. PubMed ID: 3995002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triosephosphate isomerase: energetics of the reaction catalyzed by the yeast enzyme expressed in Escherichia coli.
    Nickbarg EB; Knowles JR
    Biochemistry; 1988 Aug; 27(16):5939-47. PubMed ID: 3056516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics of triosephosphate isomerase: the nature of the proton transfer between the catalytic base and solvent water.
    Fisher LM; Albery WJ; Knowles JR
    Biochemistry; 1976 Dec; 15(25):5621-6. PubMed ID: 999837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics of triosephosphate isomerase: deuterium isotope effects in the enzyme-catalyzed reaction.
    Leadlay PF; Albery WJ; Knowles JR
    Biochemistry; 1976 Dec; 15(25):5617-20. PubMed ID: 999836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism.
    Nickbarg EB; Davenport RC; Petsko GA; Knowles JR
    Biochemistry; 1988 Aug; 27(16):5948-60. PubMed ID: 2847777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free-energy profile of the reaction catalyzed by triosephosphate isomerase.
    Albery WJ; Knowles JR
    Biochemistry; 1976 Dec; 15(25):5627-31. PubMed ID: 999838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of triosephosphate isomerase: the fate of the 1(R)-3H label of tritiated dihydroxyacetone phsophate in the isomerase reaction.
    Herlihy JM; Maister SG; Albery WJ; Knowles JR
    Biochemistry; 1976 Dec; 15(25):5601-7. PubMed ID: 999833
    [No Abstract]   [Full Text] [Related]  

  • 10. The uncatalyzed rates of enolization of dihydroxyacetone phoshate and of glyceraldehyde 3-phosphate in neutral aqueous solution. The quantitative assessment of the effectiveness of an enzyme catalyst.
    Hall A; Knowles JR
    Biochemistry; 1975 Sep; 14(19):4348-53. PubMed ID: 1182103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partition of intermediates of triosephosphate isomerase: slow conformational changes precede enolization and follow product release.
    Rose IA; Iyengar R
    Biochemistry; 1982 Mar; 21(7):1591-7. PubMed ID: 7044418
    [No Abstract]   [Full Text] [Related]  

  • 12. Failure to confirm previous observations on triosephosphate isomerase intermediate and bound substrate complexes.
    Rose IA
    Biochemistry; 1984 Nov; 23(24):5893-4. PubMed ID: 6525338
    [No Abstract]   [Full Text] [Related]  

  • 13. Proton transfer in the mechanism of triosephosphate isomerase.
    Harris TK; Cole RN; Comer FI; Mildvan AS
    Biochemistry; 1998 Nov; 37(47):16828-38. PubMed ID: 9843453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of enzyme function and the development of catalytic efficiency.
    Albery WJ; Knowles JR
    Biochemistry; 1976 Dec; 15(25):5631-40. PubMed ID: 999839
    [No Abstract]   [Full Text] [Related]  

  • 15. Hydron transfer catalyzed by triosephosphate isomerase. Products of isomerization of (R)-glyceraldehyde 3-phosphate in D2O.
    O'Donoghue AC; Amyes TL; Richard JP
    Biochemistry; 2005 Feb; 44(7):2610-21. PubMed ID: 15709774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate product equilibrium on a reversible enzyme, triosephosphate isomerase.
    Rozovsky S; McDermott AE
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2080-5. PubMed ID: 17287353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The orientation and accessibility of substrates on the active site of triosephosphate isomerase.
    Webb MR; Knowles JR
    Biochemistry; 1975 Oct; 14(21):4692-8. PubMed ID: 1182110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How can a catalytic lesion be offset? The energetics of two pseudorevertant triosephosphate isomerases.
    Blacklow SC; Knowles JR
    Biochemistry; 1990 May; 29(17):4099-108. PubMed ID: 2361134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of a reaction intermediate as a catalytic device: definition of the functional role of the flexible loop in triosephosphate isomerase.
    Pompliano DL; Peyman A; Knowles JR
    Biochemistry; 1990 Apr; 29(13):3186-94. PubMed ID: 2185832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio models for receptor-ligand interactions in proteins. 4. Model assembly study of the catalytic mechanism of triosephosphate isomerase.
    Peräkylä M; Pakkanen TA
    Proteins; 1996 Jun; 25(2):225-36. PubMed ID: 8811738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.