These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9998481)

  • 1. Calculated atomic structures and electronic properties of GaP, InP, GaAs, and InAs (110) surfaces.
    Alves JL; Hebenstreit J; Scheffler M
    Phys Rev B Condens Matter; 1991 Sep; 44(12):6188-6198. PubMed ID: 9998481
    [No Abstract]   [Full Text] [Related]  

  • 2. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties.
    Dionízio Moreira M; Venezuela P; Miwa RH
    Nanotechnology; 2010 Jul; 21(28):285204. PubMed ID: 20562482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape and size control of InAs/InP (113)B quantum dots by Sb deposition during the capping procedure.
    Lu W; Bozkurt M; Keizer JG; Rohel T; Folliot H; Bertru N; Koenraad PM
    Nanotechnology; 2011 Feb; 22(5):055703. PubMed ID: 21178229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth dynamics of InAs/InP nanowire heterostructures by Au-assisted chemical beam epitaxy.
    Zannier V; Rossi F; Ercolani D; Sorba L
    Nanotechnology; 2019 Mar; 30(9):094003. PubMed ID: 30537697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of nanogaps in InAs nanowires by selectively etching embedded InP segments.
    Schukfeh MI; Storm K; Hansen A; Thelander C; Hinze P; Beyer A; Weimann T; Samuelson L; Tornow M
    Nanotechnology; 2014 Nov; 25(46):465306. PubMed ID: 25360747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. InAs/GaAs nanostructures grown on patterned Si(001) by molecular beam epitaxy.
    He J; Yadavalli K; Zhao Z; Li N; Hao Z; Wang KL; Jacob AP
    Nanotechnology; 2008 Nov; 19(45):455607. PubMed ID: 21832784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy.
    Joyce HJ; Docherty CJ; Gao Q; Tan HH; Jagadish C; Lloyd-Hughes J; Herz LM; Johnston MB
    Nanotechnology; 2013 May; 24(21):214006. PubMed ID: 23619012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study of the band structure of GaP, GaAs, GaSb, InP, InAs, and InSb.
    Williams GP; Cerrina F; Lapeyre GJ; Anderson JR; Smith RJ; Hermanson J
    Phys Rev B Condens Matter; 1986 Oct; 34(8):5548-5557. PubMed ID: 9940388
    [No Abstract]   [Full Text] [Related]  

  • 10. Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb.
    Adachi S
    Phys Rev B Condens Matter; 1987 May; 35(14):7454-7463. PubMed ID: 9941048
    [No Abstract]   [Full Text] [Related]  

  • 11. Prediction of phonon thermal transport in thin GaAs, InAs and InP nanowires by molecular dynamics simulations: influence of the interatomic potential.
    Carrete J; Longo RC; Gallego LJ
    Nanotechnology; 2011 May; 22(18):185704. PubMed ID: 21427474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focused ion beam creation and templating of InAs and InAs/InP nanospikes.
    Grossklaus KA; Millunchick JM
    Nanotechnology; 2011 Sep; 22(35):355302. PubMed ID: 21817782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-dependent intersubband optical properties of dome-shaped InAs/GaAs quantum dots with wetting layer.
    Sabaeian M; Khaledi-Nasab A
    Appl Opt; 2012 Jun; 51(18):4176-85. PubMed ID: 22722295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning tunneling microscopy/spectroscopy study of atomic and electronic structures of In2O on InAs and In0.53Ga0.47As(001)-(4×2) surfaces.
    Shen J; Chagarov EA; Feldwinn DL; Melitz W; Santagata NM; Kummel AC; Droopad R; Passlack M
    J Chem Phys; 2010 Oct; 133(16):164704. PubMed ID: 21033816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial carrier distribution in InP/GaAs type II quantum dots and quantum posts.
    Iikawa F; Donchev V; Ivanov Ts; Dias GO; Tizei LH; Lang R; Heredia E; Gomes PF; Brasil MJ; Cotta MA; Ugarte D; Martinez Pastor JP; de Lima MM; Cantarero A
    Nanotechnology; 2011 Feb; 22(6):065703. PubMed ID: 21212489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of the GaAs semiconductor at the Al2O3/GaAs junction.
    Tuominen M; Yasir M; Lång J; Dahl J; Kuzmin M; Mäkelä J; Punkkinen M; Laukkanen P; Kokko K; Schulte K; Punkkinen R; Korpijärvi VM; Polojärvi V; Guina M
    Phys Chem Chem Phys; 2015 Mar; 17(10):7060-6. PubMed ID: 25686555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diameter-tailored telecom-band luminescence in InP/InAs heterostructure nanowires grown on InP (111)B substrate with continuously-modulated diameter from microscale to nanoscale.
    Zhang G; Tateno K; Sogawa T; Gotoh H
    Nanotechnology; 2018 Apr; 29(15):155202. PubMed ID: 29376842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of InAs/InP core-shell nanowires with various pure crystal structures.
    Gorji Ghalamestani S; Heurlin M; Wernersson LE; Lehmann S; Dick KA
    Nanotechnology; 2012 Jul; 23(28):285601. PubMed ID: 22717421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structures of [1 1 1]-oriented free-standing InAs and InP nanowires.
    Liao G; Luo N; Chen KQ; Xu HQ
    J Phys Condens Matter; 2016 Apr; 28(13):135303. PubMed ID: 26951953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55-microm photon emitter.
    He L; Gong M; Li CF; Guo GC; Zunger A
    Phys Rev Lett; 2008 Oct; 101(15):157405. PubMed ID: 18999641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.