These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9998726)

  • 1. Electronic structure and density of states of the random Al0.5Ga0.5As, GaAs0.5P0.5, and Ga0.5In0.5As semiconductor alloys.
    Magri R; Froyen S; Zunger A
    Phys Rev B Condens Matter; 1991 Oct; 44(15):7947-7964. PubMed ID: 9998726
    [No Abstract]   [Full Text] [Related]  

  • 2. Electronic structure of random Al0.5Ga0.5As alloys: Test of the "special-quasirandom-structures" description.
    Hass KC; Davis LC; Zunger A
    Phys Rev B Condens Matter; 1990 Aug; 42(6):3757-3760. PubMed ID: 9995895
    [No Abstract]   [Full Text] [Related]  

  • 3. Computational study of positron annihilation parameters for cation mono-vacancies and vacancy complexes in nitride semiconductor alloys.
    Ishibashi S; Uedono A; Kino H; Miyake T; Terakura K
    J Phys Condens Matter; 2019 Nov; 31(47):475401. PubMed ID: 31429422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration on structural stability, electronic and optical properties of Cs-activated and Cs/O-activated Al
    Tian J; Liu L; Lu F; Zhangyang X
    J Phys Condens Matter; 2023 Aug; 35(47):. PubMed ID: 37579759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic stability of (AlAs)n(GaAs)n superlattices and the random Al0.5Ga0.5As alloy.
    Wei S; Zunger A
    Phys Rev Lett; 1988 Sep; 61(13):1505-1508. PubMed ID: 10038815
    [No Abstract]   [Full Text] [Related]  

  • 6. Optical studies of vertical ambipolar transport and interface recombination velocities in GaAs/Al0.5Ga0.5As double-quantum-well heterostructures.
    Hillmer H; Forchel A; Kuhn T; Mahler G; Meier HP
    Phys Rev B Condens Matter; 1991 Jun; 43(17):13992-14000. PubMed ID: 9997268
    [No Abstract]   [Full Text] [Related]  

  • 7. Band alignment in quantum wells from automatically tuned DFT+U.
    Kolesov G; Lin C; Knyazev A; Kojima K; Katz J; Akiyama K; Nakai E; Kawahara H
    Phys Chem Chem Phys; 2019 Mar; 21(11):5966-5973. PubMed ID: 30839041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of doping on the device characteristics of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors.
    Jolley G; Fu L; Tan HH; Jagadish C
    Nanoscale; 2010 Jul; 2(7):1128-33. PubMed ID: 20648338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous surface-induced long-range order in Ga0.5In0.5P alloys.
    Bernard JE; Froyen S; Zunger A
    Phys Rev B Condens Matter; 1991 Nov; 44(20):11178-11195. PubMed ID: 9999238
    [No Abstract]   [Full Text] [Related]  

  • 10. Spatial correlations in GaInAsN alloys and their effects on band-gap enhancement and electron localization.
    Kim K; Zunger A
    Phys Rev Lett; 2001 Mar; 86(12):2609-12. PubMed ID: 11289992
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Koval NE; Da Pieve F; Artacho E
    R Soc Open Sci; 2020 Nov; 7(11):200925. PubMed ID: 33391793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Narrowband optical parametric amplification measurements in Ga0.5In0.5P photonic crystal waveguides.
    Willinger A; Roy S; Santagiustina M; Combrié S; De Rossi A; Eisenstein G
    Opt Express; 2015 Jul; 23(14):17751-7. PubMed ID: 26191837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonuniform composition profile in In0.5Ga0.5As alloy quantum dots.
    Liu N; Tersoff J; Baklenov O; Holmes AL; Shih CK
    Phys Rev Lett; 2000 Jan; 84(2):334-7. PubMed ID: 11015904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of metamorphic buffer structure and device performance of In(x)Ga(1-x)As epitaxial layers fabricated by metal organic chemical vapor deposition.
    Nguyen HQ; Yu HW; Luc QH; Tang YZ; Phan VT; Hsu CH; Chang EY; Tseng YC
    Nanotechnology; 2014 Dec; 25(48):485205. PubMed ID: 25396303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free and bound excitonic effects in Al0.5Ga0.5N/Al0.35Ga0.65N MQWs with different Si-doping levels in the well layers.
    He C; Qin Z; Xu F; Hou M; Zhang S; Zhang L; Wang X; Ge W; Shen B
    Sci Rep; 2015 Aug; 5():13046. PubMed ID: 26267249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of strain and local charge on the formation of deep defects in III-V ternary alloys.
    Bonapasta AA; Giannozzi P
    Phys Rev Lett; 2000 Apr; 84(17):3923-6. PubMed ID: 11019240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure dependence of the exciton absorption and the electronic subband structure of a Ga0.47In0.53As/Al0.48In0.52As multiple-quantum-well system.
    Goi AR; Syassen K; Zhang Y; Ploog K; Cantarero A; Cros A
    Phys Rev B Condens Matter; 1992 Mar; 45(12):6809-6818. PubMed ID: 10000444
    [No Abstract]   [Full Text] [Related]  

  • 18. Energetics and hydrogen passivation of carbon-related defects in InAs and In0.5Ga0.5As.
    Lee SG; Chang KJ
    Phys Rev B Condens Matter; 1996 Apr; 53(15):9784-9790. PubMed ID: 9982538
    [No Abstract]   [Full Text] [Related]  

  • 19. Higher-interband electroreflectance of long-range ordered Ga0.5In0.5P.
    Kita T; Yamashita K; Nishino T
    Phys Rev B Condens Matter; 1996 Dec; 54(23):16714-16718. PubMed ID: 9985800
    [No Abstract]   [Full Text] [Related]  

  • 20. Magnetophonon resonance under hydrostatic pressure in GaAs-Al0.28Ga0.72As and Ga0.47In0.53As-Al0.48In0.52As heterojunctions.
    Grégoris G; Beerens J; Ben Amor S ; Dmowski L; Portal JC; Alexandre F; Sivco DL; Cho AY
    Phys Rev B Condens Matter; 1988 Jan; 37(3):1262-1272. PubMed ID: 9944634
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.