These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9998950)

  • 41. Dynamical and structural properties of a granular model for a magnetorheological fluid.
    Donado F; Sausedo-Solorio JM; Moctezuma RE
    Phys Rev E; 2017 Feb; 95(2-1):022601. PubMed ID: 28297852
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proposed Spontaneous Generation of Magnetic Fields by Curved Layers of a Chiral Superconductor.
    Kvorning T; Hansson TH; Quelle A; Smith CM
    Phys Rev Lett; 2018 May; 120(21):217002. PubMed ID: 29883131
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Linear response domain in glassy systems.
    Williams SR; Evans DJ
    Phys Rev Lett; 2006 Jan; 96(1):015701. PubMed ID: 16486474
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Homogeneous and fractal behavior of superconducting fluctuations in the electrical resistivity of granular ceramic superconductors.
    Ausloos M; Clippe P; Laurent C
    Phys Rev B Condens Matter; 1990 May; 41(13):9506-9509. PubMed ID: 9993299
    [No Abstract]   [Full Text] [Related]  

  • 45. Anomalous behavior of the flux line lattice of vibrating high-Tc superconductors at 30 K in magnetic fields parallel to the CuO2 planes.
    Kopelevich Y; Gupta A; Esquinazi P
    Phys Rev Lett; 1993 Feb; 70(5):666-669. PubMed ID: 10054172
    [No Abstract]   [Full Text] [Related]  

  • 46. Enhanced magnetoresistance induced by spin transfer torque in granular films with a magnetic field.
    Chen TY; Huang SX; Chien CL; Stiles MD
    Phys Rev Lett; 2006 May; 96(20):207203. PubMed ID: 16803201
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamics and stability of vortex-antivortex fronts in type-II superconductors.
    Baggio C; Howard M; van Saarloos W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026209. PubMed ID: 15447567
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physics of the granular state.
    Jaeger HM; Nagel SR
    Science; 1992 Mar; 255(5051):1523-31. PubMed ID: 17820163
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Probability distribution of inherent states in models of granular media and glasses.
    Coniglio A; Fierro A; Nicodemi M
    Eur Phys J E Soft Matter; 2002 Nov; 9(3):219-26. PubMed ID: 15010911
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Superconductivity fluctuations in electrical and thermoelectrical properties of granular ceramic superconductors: Homogeneous versus fractal behavior.
    Clippe P; Laurent C; Patapis SK; Ausloos M
    Phys Rev B Condens Matter; 1990 Nov; 42(13):8611-8614. PubMed ID: 9995040
    [No Abstract]   [Full Text] [Related]  

  • 51. Caging dynamics in a granular fluid.
    Reis PM; Ingale RA; Shattuck MD
    Phys Rev Lett; 2007 May; 98(18):188301. PubMed ID: 17501613
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A review of finite size effects in quasi-zero dimensional superconductors.
    Bose S; Ayyub P
    Rep Prog Phys; 2014 Nov; 77(11):116503. PubMed ID: 25373494
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of different methods for analyzing μSR line shapes in the vortex state of type-II superconductors.
    Maisuradze A; Khasanov R; Shengelaya A; Keller H
    J Phys Condens Matter; 2009 Feb; 21(7):075701. PubMed ID: 21817334
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Critical dynamics of gauge systems: spontaneous vortex formation in 2D superconductors.
    Stephens GJ; Bettencourt LM; Zurek WH
    Phys Rev Lett; 2002 Apr; 88(13):137004. PubMed ID: 11955118
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Organic superconductors--new benchmarks.
    Williams JM; Schultz AJ; Geiser U; Carlson KD; Kini AM; Wang HH; Kwok WK; Whangbo MH; Schirber JE
    Science; 1991 Jun; 252(5012):1501-8. PubMed ID: 17834875
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tunnel diode resonator for precision magnetic susceptibility measurements in a mK temperature range and large DC magnetic fields.
    Kim H; Tanatar MA; Prozorov R
    Rev Sci Instrum; 2018 Sep; 89(9):094704. PubMed ID: 30278767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transport properties of granular metals at low temperatures.
    Beloborodov IS; Efetov KB; Lopatin AV; Vinokur VM
    Phys Rev Lett; 2003 Dec; 91(24):246801. PubMed ID: 14683143
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time-Reversal Symmetry Breaking in Re-Based Superconductors.
    Shang T; Smidman M; Ghosh SK; Baines C; Chang LJ; Gawryluk DJ; Barker JAT; Singh RP; Paul DM; Balakrishnan G; Pomjakushina E; Shi M; Medarde M; Hillier AD; Yuan HQ; Quintanilla J; Mesot J; Shiroka T
    Phys Rev Lett; 2018 Dec; 121(25):257002. PubMed ID: 30608781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel approach for x-ray scattering experiments in magnetic fields utilizing trapped flux in type-II superconductors.
    Das RK; Islam Z; Ruff JP; Sawh RP; Weinstein R; Canfield PC; Kim JW; Lang JC
    Rev Sci Instrum; 2012 Jun; 83(6):065103. PubMed ID: 22755658
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Magnetic avalanches in granular ferromagnets: thermal activated collective behavior.
    Chern GW
    J Phys Condens Matter; 2017 Feb; 29(4):044004. PubMed ID: 27897133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.