These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9999153)

  • 41. Kinetics of Nucleation at Increasing Supersaturation.
    Schmelzer JW; Schmelzer J
    J Colloid Interface Sci; 1999 Jul; 215(2):345-355. PubMed ID: 10419670
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calixarene-Mediated Synthesis of Cobalt Nanoparticles: An Accretion Model for Separate Control over Nucleation and Growth.
    Chen Z; Liu J; Evans AJ; Alberch L; Wei A
    Chem Mater; 2014; 26(2):941-950. PubMed ID: 25960603
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nucleation and growth of droplets at a liquid-gas interface.
    Nepomnyashchy AA; Golovin AA; Tikhomirova AE; Volpert VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021605. PubMed ID: 17025444
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Resistance Training Threshold for Elevating Bone Mineral Density in Growing Female Rats.
    Dror AD; Virk K; Lee K; Gerston A; Prakash A; Abbott MJ; Jaque SV; Sumida KD
    Int J Sports Med; 2018 May; 39(5):382-389. PubMed ID: 29475208
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A classical view on nonclassical nucleation.
    Smeets PJM; Finney AR; Habraken WJEM; Nudelman F; Friedrich H; Laven J; De Yoreo JJ; Rodger PM; Sommerdijk NAJM
    Proc Natl Acad Sci U S A; 2017 Sep; 114(38):E7882-E7890. PubMed ID: 28874584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cooperative island growth of large-area single-crystal graphene on copper using chemical vapor deposition.
    Eres G; Regmi M; Rouleau CM; Chen J; Ivanov IN; Puretzky AA; Geohegan DB
    ACS Nano; 2014 Jun; 8(6):5657-69. PubMed ID: 24833238
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nucleation and growth mechanisms of Al
    Zhang H; Chiappe D; Meersschaut J; Conard T; Franquet A; Nuytten T; Mannarino M; Radu I; Vandervorst W; Delabie A
    J Chem Phys; 2017 Feb; 146(5):052810. PubMed ID: 28178804
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two-Dimensional Nucleation on the Terrace of Colloidal Crystals with Added Polymers.
    Nozawa J; Uda S; Guo S; Hu S; Toyotama A; Yamanaka J; Okada J; Koizumi H
    Langmuir; 2017 Apr; 33(13):3262-3269. PubMed ID: 28300415
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nonstoichiometric nucleation and growth of multicomponent nanocrystals in solution.
    Min Y; Kwak J; Soon A; Jeong U
    Acc Chem Res; 2014 Oct; 47(10):2887-93. PubMed ID: 25133523
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The nucleation rate of crystalline ice in amorphous solid water.
    Safarik DJ; Mullins CB
    J Chem Phys; 2004 Sep; 121(12):6003-10. PubMed ID: 15367028
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nucleation in electrochemical growth of the Ag(100) crystal face: determining the nucleus size via the nucleation theorem.
    Kashchiev D; Bostanov V
    J Chem Phys; 2007 Dec; 127(24):244709. PubMed ID: 18163697
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nucleation rates and induction times during colloidal crystallization: links between models and experiments.
    Dixit NM; Zukoski CF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051602. PubMed ID: 12513493
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crystal nucleation rates in glass-forming molecular liquids: D-sorbitol, D-arabitol, D-xylitol, and glycerol.
    Huang C; Chen Z; Gui Y; Shi C; Zhang GGZ; Yu L
    J Chem Phys; 2018 Aug; 149(5):054503. PubMed ID: 30089376
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multicomponent condensation on the nucleation stage.
    Kuchma AE; Shchekin AK
    J Chem Phys; 2019 Feb; 150(5):054104. PubMed ID: 30736687
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determining the nucleation rate from the dimer growth probability.
    ter Horst JH; Kashchiev D
    J Chem Phys; 2005 Sep; 123(11):114507. PubMed ID: 16392573
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spinodal for the solution-to-crystal phase transformation.
    Filobelo LF; Galkin O; Vekilov PG
    J Chem Phys; 2005 Jul; 123(1):014904. PubMed ID: 16035866
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gas-bubble effects on the formation of colloidal iron oxide nanocrystals.
    Lynch J; Zhuang J; Wang T; LaMontagne D; Wu H; Cao YC
    J Am Chem Soc; 2011 Aug; 133(32):12664-74. PubMed ID: 21702497
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microcanonical molecular simulations of methane hydrate nucleation and growth: evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways.
    Zhang Z; Walsh MR; Guo GJ
    Phys Chem Chem Phys; 2015 Apr; 17(14):8870-6. PubMed ID: 25743115
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The photochemical growth of silver nanoparticles on semiconductor surfaces--initial nucleation stage.
    Dunn S; Sharp S; Burgess S
    Nanotechnology; 2009 Mar; 20(11):115604. PubMed ID: 19420444
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of crystals with a programmable kinetic barrier to nucleation.
    Schulman R; Winfree E
    Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15236-41. PubMed ID: 17881584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.