These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 999936)
1. Voltage-induce capacitance relaxation of lipid bilayer membranes. Effects of membrane composition. Benz R; Janko K Biochim Biophys Acta; 1976 Dec; 455(3):721-38. PubMed ID: 999936 [TBL] [Abstract][Full Text] [Related]
2. Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Benz R; Fröhlich O; Läuger P; Montal M Biochim Biophys Acta; 1975 Jul; 394(3):323-34. PubMed ID: 1131368 [TBL] [Abstract][Full Text] [Related]
3. Voltage-induced thickness changes of lipid bilayer membranes and the effect of an electrin field on gramicidin A channel formation. Bamberg E; Benz R Biochim Biophys Acta; 1976 Mar; 426(3):570-80. PubMed ID: 57801 [TBL] [Abstract][Full Text] [Related]
7. Non-electrolyte permeability through black lipid membranes with different surface charge. Micelli S; Galucci E; Lippe C Arch Int Physiol Biochim; 1978 Oct; 86(4):755-9. PubMed ID: 84553 [TBL] [Abstract][Full Text] [Related]
8. Planar bilayer membranes from photoactivable phospholipids. Borle F; Sänger M; Sigrist H Biochim Biophys Acta; 1991 Jul; 1066(2):144-50. PubMed ID: 1713063 [TBL] [Abstract][Full Text] [Related]
9. The composition of black lipid membranes formed from egg-yolk lecithin, cholesterol and n-decane. Bunce AS; Hider RC Biochim Biophys Acta; 1974 Sep; 363(3):423-7. PubMed ID: 4477718 [No Abstract] [Full Text] [Related]
10. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Montal M; Mueller P Proc Natl Acad Sci U S A; 1972 Dec; 69(12):3561-6. PubMed ID: 4509315 [TBL] [Abstract][Full Text] [Related]
12. Interaction of hopanoids with phosphatidylcholines containing oleic and omega-cyclohexyldodecanoic acid in lipid bilayer membranes. Benz R; Hallmann D; Poralla K; Eibl H Chem Phys Lipids; 1983 Dec; 34(1):7-24. PubMed ID: 6661806 [TBL] [Abstract][Full Text] [Related]
13. The effect of undecaprenol on bilayer lipid membranes. Janas T; Chojnacki T; Swiezewska E; Janas T Acta Biochim Pol; 1994; 41(3):351-8. PubMed ID: 7856407 [TBL] [Abstract][Full Text] [Related]
14. The rate constants of valinomycin-mediated ion transport through thin lipid membranes. Stark G; Ketterer B; Benz R; Läuger P Biophys J; 1971 Dec; 11(12):981-94. PubMed ID: 4332419 [TBL] [Abstract][Full Text] [Related]
15. Influence of membrane structure on the kinetics of carrier-mediated ion transport through lipid bilayers. Benz R; Fröhlich O; Läuger P Biochim Biophys Acta; 1977 Feb; 464(3):465-81. PubMed ID: 836821 [TBL] [Abstract][Full Text] [Related]
17. The electrical capacitance of phospholipid membranes. Ohki S Biophys J; 1969 Oct; 9(10):1195-205. PubMed ID: 5387906 [TBL] [Abstract][Full Text] [Related]
18. [Lipid bilayer with ion channels--a dipole with inductive properties]. Grigor'ev PA; Kiselev EA Biofizika; 1984; 29(2):332-4. PubMed ID: 6722204 [TBL] [Abstract][Full Text] [Related]
19. The effect of rimantadine on the structure of model and biological membranes. Cherny VV; Paulitschke M; Simonova MV; Hessel E; Ermakov YuA ; Sokolov VS; Lerche D; Markin VS Gen Physiol Biophys; 1989 Feb; 8(1):23-37. PubMed ID: 2737460 [TBL] [Abstract][Full Text] [Related]
20. Calcium-induced interaction of phospholipid vesicles and bilayer lipid membranes. Düzgüneş N; Ohki S Biochim Biophys Acta; 1977 Jun; 467(3):301-8. PubMed ID: 884073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]