These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9999724)

  • 1. Electron-phonon interaction and electron scattering by modified confined LO phonons in semiconductor quantum wells.
    Haupt R; Wendler L
    Phys Rev B Condens Matter; 1991 Jul; 44(4):1850-1860. PubMed ID: 9999724
    [No Abstract]   [Full Text] [Related]  

  • 2. Erratum: Electron-LO-phonon scattering rates in semiconductor quantum wells.
    Rudin S; Reinecke TL
    Phys Rev B Condens Matter; 1991 Apr; 43(11):9298. PubMed ID: 9996610
    [No Abstract]   [Full Text] [Related]  

  • 3. Electron-LO-phonon scattering rates in semiconductor quantum wells.
    Rudin S; Reinecke TL
    Phys Rev B Condens Matter; 1990 Apr; 41(11):7713-7717. PubMed ID: 9993068
    [No Abstract]   [Full Text] [Related]  

  • 4. Quantum Zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots.
    Kilina SV; Neukirch AJ; Habenicht BF; Kilin DS; Prezhdo OV
    Phys Rev Lett; 2013 May; 110(18):180404. PubMed ID: 23683182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz electron-hole recollisions in GaAs/AlGaAs quantum wells: robustness to scattering by optical phonons and thermal fluctuations.
    Banks H; Zaks B; Yang F; Mack S; Gossard AC; Liu R; Sherwin MS
    Phys Rev Lett; 2013 Dec; 111(26):267402. PubMed ID: 24483813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring the electric field in CdSe quantum dots under ultrafast interfacial electron transfer via coherent phonon dynamics.
    Cherepanov DA; Gostev FE; Shelaev IV; Denisov NN; Nadtochenko VA
    Nanoscale; 2018 Dec; 10(47):22409-22419. PubMed ID: 30475371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electron-phonon interaction at deep Bi
    Wiesner M; Trzaskowska A; Mroz B; Charpentier S; Wang S; Song Y; Lombardi F; Lucignano P; Benedek G; Campi D; Bernasconi M; Guinea F; Tagliacozzo A
    Sci Rep; 2017 Nov; 7(1):16449. PubMed ID: 29180657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Observation of Exciton-Phonon Coupling Dynamics in Self-Assembled Hybrid Perovskite Quantum Wells.
    Ni L; Huynh U; Cheminal A; Thomas TH; Shivanna R; Hinrichsen TF; Ahmad S; Sadhanala A; Rao A
    ACS Nano; 2017 Nov; 11(11):10834-10843. PubMed ID: 29064668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical absorption of semiconducting and metallic nanospheres with the confined electron-phonon coupling.
    Lee JD
    J Chem Phys; 2006 May; 124(19):194706. PubMed ID: 16729833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots.
    Nozik AJ
    Annu Rev Phys Chem; 2001; 52():193-231. PubMed ID: 11326064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity.
    Chen JC; Sato Y; Kosaka R; Hashisaka M; Muraki K; Fujisawa T
    Sci Rep; 2015 Oct; 5():15176. PubMed ID: 26469629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of electron temperature and carrier concentration on electron-LO-phonon intersubband scattering in wide GaAs/AlxGa1-xAs quantum wells.
    Lee S; Galbraith I; Pidgeon CR
    Phys Rev B Condens Matter; 1995 Jul; 52(3):1874-1881. PubMed ID: 9981255
    [No Abstract]   [Full Text] [Related]  

  • 13. Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots.
    Reigue A; Iles-Smith J; Lux F; Monniello L; Bernard M; Margaillan F; Lemaitre A; Martinez A; McCutcheon DPS; Mørk J; Hostein R; Voliotis V
    Phys Rev Lett; 2017 Jun; 118(23):233602. PubMed ID: 28644642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron scattering by confined LO polar phonons in a quantum well.
    Ridley BK
    Phys Rev B Condens Matter; 1989 Mar; 39(8):5282-5286. PubMed ID: 9948918
    [No Abstract]   [Full Text] [Related]  

  • 15. Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires.
    Kargar F; Debnath B; Kakko JP; Säynätjoki A; Lipsanen H; Nika DL; Lake RK; Balandin AA
    Nat Commun; 2016 Nov; 7():13400. PubMed ID: 27830698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zero-phonon linewidth and phonon satellites in the optical absorption of nanowire-based quantum dots.
    Lindwall G; Wacker A; Weber C; Knorr A
    Phys Rev Lett; 2007 Aug; 99(8):087401. PubMed ID: 17930979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled bloch-phonon oscillations in semiconductor superlattices.
    Dekorsy T; Bartels A; Kurz H; Kohler K; Hey R; Ploog K
    Phys Rev Lett; 2000 Jul; 85(5):1080-3. PubMed ID: 10991479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron-Phonon Systems on a Universal Quantum Computer.
    Macridin A; Spentzouris P; Amundson J; Harnik R
    Phys Rev Lett; 2018 Sep; 121(11):110504. PubMed ID: 30265100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlocal electron-phonon coupling in organic semiconductor crystals: the role of acoustic lattice vibrations.
    Li Y; Coropceanu V; Brédas JL
    J Chem Phys; 2013 May; 138(20):204713. PubMed ID: 23742506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields.
    Sun CK; Liang JC; Yu XY
    Phys Rev Lett; 2000 Jan; 84(1):179-82. PubMed ID: 11015864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.