These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9999950)

  • 21. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: exactly solvable two-site Hubbard model.
    Kutepov AL
    J Phys Condens Matter; 2015 Aug; 27(31):315603. PubMed ID: 26199232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-energy kink in the single-particle spectra of the two-dimensional hubbard model.
    Macridin A; Jarrell M; Maier T; Scalapino DJ
    Phys Rev Lett; 2007 Dec; 99(23):237001. PubMed ID: 18233400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Renormalized perturbation theory of magnetic instabilities in the two-dimensional Hubbard model at small doping.
    Chubukov AV; Frenkel DM
    Phys Rev B Condens Matter; 1992 Nov; 46(18):11884-11901. PubMed ID: 10003085
    [No Abstract]   [Full Text] [Related]  

  • 24. Prethermal Floquet Steady States and Instabilities in the Periodically Driven, Weakly Interacting Bose-Hubbard Model.
    Bukov M; Gopalakrishnan S; Knap M; Demler E
    Phys Rev Lett; 2015 Nov; 115(20):205301. PubMed ID: 26613449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Derivation and application of a Green function propagator suitable for nonparaxial propagation over a two-dimensional domain.
    Capps DM
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):563-577. PubMed ID: 31044976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U.
    Patrick CE; Giustino F
    J Phys Condens Matter; 2012 May; 24(20):202201. PubMed ID: 22510587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Renormalized pseudoparticle description of the one-dimensional Hubbard model thermodynamics.
    Carmelo J; Horsch P; Bares PA; Ovchinnikov AA
    Phys Rev B Condens Matter; 1991 Nov; 44(18):9967-9980. PubMed ID: 9998998
    [No Abstract]   [Full Text] [Related]  

  • 28. Thermodynamics of a bad metal-Mott insulator transition in the presence of frustration.
    Kokalj J; McKenzie RH
    Phys Rev Lett; 2013 May; 110(20):206402. PubMed ID: 25167433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Collective excitations and response functions of two-band band-singlet and spin-triplet superconductors.
    Lee HC
    J Phys Condens Matter; 2011 Feb; 23(5):055701. PubMed ID: 21406913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quasiparticle dispersion in the cuprate superconductors and the two-dimensional Hubbard model.
    Bulut N; Scalapino DJ; White SR
    Phys Rev B Condens Matter; 1994 Sep; 50(10):7215-7218. PubMed ID: 9974692
    [No Abstract]   [Full Text] [Related]  

  • 31. Quasiparticle bands of the two-dimensional Hubbard model.
    Zhou Y; Fedro AJ; Bowen SP; Koelling DD; Leung TC; Harmon BN; Sinha SK
    Phys Rev B Condens Matter; 1991 Nov; 44(18):10291-10295. PubMed ID: 9999036
    [No Abstract]   [Full Text] [Related]  

  • 32. Composite quasiparticle formation and the low-energy effective Hamiltonians for the one- and two-dimensional Hubbard model.
    Gan J; Lee DH; HedegÄrd P
    Phys Rev B Condens Matter; 1996 Sep; 54(11):7737-7757. PubMed ID: 9984447
    [No Abstract]   [Full Text] [Related]  

  • 33. Band structure, magnetic fluctuations, and quasiparticle nature of the two-dimensional three-band Hubbard model.
    Ding HQ; Lang GH; Goddard WA
    Phys Rev B Condens Matter; 1992 Dec; 46(21):14317-14320. PubMed ID: 10003528
    [No Abstract]   [Full Text] [Related]  

  • 34. Quasiparticle and Spin Excitation Spectra in the Normal and d-Wave Superconducting State of the Two-Dimensional Hubbard Model.
    Dahm T; Tewordt L
    Phys Rev Lett; 1995 Jan; 74(5):793-796. PubMed ID: 10058849
    [No Abstract]   [Full Text] [Related]  

  • 35. Breakdown of the quasiparticle picture in the low-density limit of the one-dimensional Hubbard model.
    Qin S; Qian T; Yu L; Su Z
    Phys Rev B Condens Matter; 1995 Jun; 51(23):16594-16598. PubMed ID: 9978661
    [No Abstract]   [Full Text] [Related]  

  • 36. Random-phase-approximation analysis of orbital- and magnetic-fluctuation-mediated superconductivity in a two-band Hubbard model.
    Buda F; Cox DL; Jarrell M
    Phys Rev B Condens Matter; 1994 Jan; 49(2):1255-1268. PubMed ID: 10010435
    [No Abstract]   [Full Text] [Related]  

  • 37. Quantum critical point at finite doping in the 2D Hubbard model: a dynamical cluster quantum Monte Carlo study.
    Vidhyadhiraja NS; Macridin A; Sen C; Jarrell M; Ma M
    Phys Rev Lett; 2009 May; 102(20):206407. PubMed ID: 19519050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polaronic quasiparticles in a strongly correlated electron band.
    Koller W; Hewson AC; Edwards DM
    Phys Rev Lett; 2005 Dec; 95(25):256401. PubMed ID: 16384481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic energy driven pairing in cuprate superconductors.
    Maier TA; Jarrell M; Macridin A; Slezak C
    Phys Rev Lett; 2004 Jan; 92(2):027005. PubMed ID: 14753963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Communication: generalization of Koopmans' theorem to optical transitions in the Hubbard model of graphene nanodots.
    Sheng W; Luo K; Zhou A
    J Chem Phys; 2015 Jan; 142(2):021102. PubMed ID: 25591331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.