These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9999965)

  • 1. Magnetotransport in two-dimensional lateral superlattices.
    Lorke A; Kotthaus JP; Ploog K
    Phys Rev B Condens Matter; 1991 Aug; 44(7):3447-3450. PubMed ID: 9999965
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantum magnetotransport theory for bound-state electrons in lateral surface superlattices.
    Huang D; Gumbs G
    Phys Rev B Condens Matter; 1995 Feb; 51(8):5558-5561. PubMed ID: 9979458
    [No Abstract]   [Full Text] [Related]  

  • 3. Magnetotransport properties of lateral-surface superlattices by molecular-dynamics Monte Carlo simulation.
    Yamada T; Ferry DK
    Phys Rev B Condens Matter; 1993 Jan; 47(3):1444-1452. PubMed ID: 10006158
    [No Abstract]   [Full Text] [Related]  

  • 4. Perovskite oxide superlattices: Magnetotransport and magnetic properties.
    Gong GQ; Gupta A; Xiao G; Lecoeur P; McGuire TR
    Phys Rev B Condens Matter; 1996 Aug; 54(6):R3742-R3745. PubMed ID: 9986361
    [No Abstract]   [Full Text] [Related]  

  • 5. Magnetotransport properties of p-type HgTe-CdTe superlattices.
    Woo KC; Rafol S; Faurie JP
    Phys Rev B Condens Matter; 1986 Oct; 34(8):5996-5999. PubMed ID: 9940462
    [No Abstract]   [Full Text] [Related]  

  • 6. Quantum study of magnetotransport in antidot superlattices.
    Silberbauer H; Rössler U
    Phys Rev B Condens Matter; 1994 Oct; 50(16):11911-11914. PubMed ID: 9975331
    [No Abstract]   [Full Text] [Related]  

  • 7. Scaling behavior of giant magnetotransport effects in Co/Cu superlattices.
    Tsui F; Chen B; Barlett D; Clarke R; Uher C
    Phys Rev Lett; 1994 Jan; 72(5):740-743. PubMed ID: 10056511
    [No Abstract]   [Full Text] [Related]  

  • 8. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice.
    Bonilla LL; Carretero M; Segura A
    Phys Rev E; 2017 Dec; 96(6-1):062215. PubMed ID: 29347331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Magnetic Quantum Criticality of Artificial Kondo Superlattices CeRhIn_{5}/YbRhIn_{5}.
    Ishii T; Toda R; Hanaoka Y; Tokiwa Y; Shimozawa M; Kasahara Y; Endo R; Terashima T; Nevidomskyy AH; Shibauchi T; Matsuda Y
    Phys Rev Lett; 2016 May; 116(20):206401. PubMed ID: 27258878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.
    Lim SH; Lee T; Oh Y; Narayanan T; Sung BJ; Choi SM
    Nat Commun; 2017 Aug; 8(1):360. PubMed ID: 28842555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport in superlattices of magnetic nanoparticles: coulomb blockade, hysteresis, and switching induced by a magnetic field.
    Tan RP; Carrey J; Desvaux C; Grisolia J; Renaud P; Chaudret B; Respaud M
    Phys Rev Lett; 2007 Oct; 99(17):176805. PubMed ID: 17995360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-order fractal states in graphene superlattices.
    Krishna Kumar R; Mishchenko A; Chen X; Pezzini S; Auton GH; Ponomarenko LA; Zeitler U; Eaves L; Fal'ko VI; Geim AK
    Proc Natl Acad Sci U S A; 2018 May; 115(20):5135-5139. PubMed ID: 29712870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties.
    Jiao Y; Han D; Ding Y; Zhang X; Guo G; Hu J; Yang D; Dong A
    Nat Commun; 2015 Mar; 6():6420. PubMed ID: 25739732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolayer atomic crystal molecular superlattices.
    Wang C; He Q; Halim U; Liu Y; Zhu E; Lin Z; Xiao H; Duan X; Feng Z; Cheng R; Weiss NO; Ye G; Huang YC; Wu H; Cheng HC; Shakir I; Liao L; Chen X; Goddard WA; Huang Y; Duan X
    Nature; 2018 Mar; 555(7695):231-236. PubMed ID: 29517002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices.
    Zhang Z; Chen P; Duan X; Zang K; Luo J; Duan X
    Science; 2017 Aug; 357(6353):788-792. PubMed ID: 28775210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional nanocrystal superlattices grown in nanoliter microfluidic plugs.
    Bodnarchuk MI; Li L; Fok A; Nachtergaele S; Ismagilov RF; Talapin DV
    J Am Chem Soc; 2011 Jun; 133(23):8956-60. PubMed ID: 21510705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional electrons in lateral magnetic superlattices.
    Ibrahim IS; Peeters FM
    Phys Rev B Condens Matter; 1995 Dec; 52(24):17321-17334. PubMed ID: 9981162
    [No Abstract]   [Full Text] [Related]  

  • 18. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices.
    Zhou W; Zhang YY; Chen J; Li D; Zhou J; Liu Z; Chisholm MF; Pantelides ST; Loh KP
    Sci Adv; 2018 Mar; 4(3):eaap9096. PubMed ID: 29740600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of dielectric permittivity of perovskite-type artificial superlattices.
    Kinbara H; Harigai T; Kakemoto H; Wada S; Tsurumi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2541-7. PubMed ID: 18276552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Even-odd filling-factor switching in one-dimensional lateral superlattices.
    Tornow M; Weiss D; Manolescu A; Menne R; Klitzing Kv; Weimann G
    Phys Rev B Condens Matter; 1996 Dec; 54(23):16397-16400. PubMed ID: 9985753
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.