BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

Terms: = Breast cancer AND PTPN11, CFC, Q06124, 5781, ENSG00000179295, SHP2, MGC14433, SHP-2, BPTP3, PTP-1D, SH-PTP3, NS1, SH-PTP2, PTP2C AND Treatment
52 results:

  • 1. shp2 potentiates anti-PD-1 effectiveness through intervening cell pyroptosis resistance in triple-negative breast cancer.
    Chen C; Cheng Y; Lei H; Feng X; Zhang H; Qi L; Wan J; Xu H; Zhao X; Zhang Y; Yang B
    Biomed Pharmacother; 2023 Dec; 168():115797. PubMed ID: 37913735
    [TBL] [Abstract] [Full Text] [Related]  

  • 2. PI3K inhibition circumvents resistance to shp2 blockade in metastatic triple-negative breast cancer.
    Amante RJ; Jehanno C; De Silva D; Coissieux MM; Ackerknecht M; Romanet V; Sethi A; Hamelin B; Preca BT; Piscuoglio S; Ng CKY; Mohseni M; Bentires-Alj M
    J Mammary Gland Biol Neoplasia; 2023 Jun; 28(1):13. PubMed ID: 37294349
    [TBL] [Abstract] [Full Text] [Related]  

  • 3. Tumor Cell-Autonomous shp2 Contributes to Immune Suppression in Metastatic breast cancer.
    Chen H; Cresswell GM; Libring S; Ayers MG; Miao J; Zhang ZY; Solorio L; Ratliff TL; Wendt MK
    Cancer Res Commun; 2022 Oct; 2(10):1104-1118. PubMed ID: 36969745
    [TBL] [Abstract] [Full Text] [Related]  

  • 4. Early Triple-Negative breast cancers in a Singapore Cohort Exhibit High PIK3CA Mutation Rates Associated With Low PD-L1 Expression.
    Yeong J; Goh D; Tan TJ; Tan B; Sivaraj H; Koh V; Tatt Lim JC; Joseph CR; Ye J; Yong Tay TK; Chan Lau M; Chan JY; Ng C; Iqbal J; Teh BT; Dent RA; Tan PH
    Mod Pathol; 2023 Apr; 36(4):100056. PubMed ID: 36788078
    [TBL] [Abstract] [Full Text] [Related]  

  • 5. Acacetin induces sustained ERK1/2 activation and RIP1-dependent necroptotic death in breast cancer cells.
    Kandhari K; Mishra JPN; Agarwal R; Singh RP
    Toxicol Appl Pharmacol; 2023 Mar; 462():116409. PubMed ID: 36740148
    [TBL] [Abstract] [Full Text] [Related]  

  • 6. Design and synthesis of improved active-site shp2 inhibitors with anti-breast cancer cell effects.
    Lade DM; Nicoletti R; Mersch J; Agazie YM
    Eur J Med Chem; 2023 Feb; 247():115017. PubMed ID: 36584630
    [TBL] [Abstract] [Full Text] [Related]  

  • 7. Direct AKT activation in tumor-infiltrating lymphocytes markedly increases interferon-γ (IFN-γ) for the regression of tumors resistant to PD-1 checkpoint blockade.
    Santinon F; Ezzahra BF; Bachais M; Sarabia Pacis A; Rudd CE
    Sci Rep; 2022 Nov; 12(1):18509. PubMed ID: 36323740
    [TBL] [Abstract] [Full Text] [Related]  

  • 8. Trastuzumab combined chemotherapy for the treatment of HER2-positive advanced gastric cancer: A systematic review and meta-analysis of randomized controlled trial.
    Xue C; Xu YH
    Medicine (Baltimore); 2022 Aug; 101(34):e29992. PubMed ID: 36042610
    [TBL] [Abstract] [Full Text] [Related]  

  • 9. Protein Tyrosine Phosphatase shp2 Controls Interleukin-8 Expression in breast cancer Cells.
    Amante RJ; Auf der Maur P; Richina V; Sethi A; Iesmantavicius V; Bonenfant D; Aceto N; Bentires-Alj M
    J Mammary Gland Biol Neoplasia; 2022 Jun; 27(2):145-153. PubMed ID: 35739379
    [TBL] [Abstract] [Full Text] [Related]  

  • 10. Discovery of a Novel Src Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 (shp2) and Cyclin-Dependent Kinase 4 (CDK4) Dual Inhibitor for the treatment of Triple-Negative breast cancer.
    Chen X; Shu C; Li W; Hou Q; Luo G; Yang K; Wu X
    J Med Chem; 2022 May; 65(9):6729-6747. PubMed ID: 35447031
    [TBL] [Abstract] [Full Text] [Related]  

  • 11. Targeting shp2 phosphatase in breast cancer overcomes RTK-mediated resistance to PI3K inhibitors.
    Heynen GJJE; Lisek K; Vogel R; Wulf-Goldenberg A; Alcaniz J; Montaudon E; Marangoni E; Birchmeier W
    Breast Cancer Res; 2022 Apr; 24(1):23. PubMed ID: 35365185
    [TBL] [Abstract] [Full Text] [Related]  

  • 12. Discovery of novel furanylbenzamide inhibitors that target oncogenic tyrosine phosphatase shp2 in leukemia cells.
    Raveendra-Panickar D; Finlay D; Layng FI; Lambert LJ; Celeridad M; Zhao M; Barbosa K; De Backer LJS; Kwong E; Gosalia P; Rodiles S; Holleran J; Ardecky R; Grotegut S; Olson S; Hutchinson JH; Pasquale EB; Vuori K; Deshpande AJ; Cosford NDP; Tautz L
    J Biol Chem; 2022 Jan; 298(1):101477. PubMed ID: 34896393
    [TBL] [Abstract] [Full Text] [Related]  

  • 13. Time-resolved phosphoproteomics reveals scaffolding and catalysis-responsive patterns of shp2-dependent signaling.
    Vemulapalli V; Chylek LA; Erickson A; Pfeiffer A; Gabriel KH; LaRochelle J; Subramanian K; Cao R; Stegmaier K; Mohseni M; LaMarche MJ; Acker MG; Sorger PK; Gygi SP; Blacklow SC
    Elife; 2021 Mar; 10():. PubMed ID: 33755016
    [TBL] [Abstract] [Full Text] [Related]  

  • 14. Novel PROTACs for degradation of shp2 protein.
    Zheng M; Liu Y; Wu C; Yang K; Wang Q; Zhou Y; Chen L; Li H
    Bioorg Chem; 2021 May; 110():104788. PubMed ID: 33706076
    [TBL] [Abstract] [Full Text] [Related]  

  • 15. Proteogenomic and metabolomic characterization of human glioblastoma.
    Wang LB; Karpova A; Gritsenko MA; Kyle JE; Cao S; Li Y; Rykunov D; Colaprico A; Rothstein JH; Hong R; Stathias V; Cornwell M; Petralia F; Wu Y; Reva B; Krug K; Pugliese P; Kawaler E; Olsen LK; Liang WW; Song X; Dou Y; Wendl MC; Caravan W; Liu W; Cui Zhou D; Ji J; Tsai CF; Petyuk VA; Moon J; Ma W; Chu RK; Weitz KK; Moore RJ; Monroe ME; Zhao R; Yang X; Yoo S; Krek A; Demopoulos A; Zhu H; Wyczalkowski MA; McMichael JF; Henderson BL; Lindgren CM; Boekweg H; Lu S; Baral J; Yao L; Stratton KG; Bramer LM; Zink E; Couvillion SP; Bloodsworth KJ; Satpathy S; Sieh W; Boca SM; Schürer S; Chen F; Wiznerowicz M; Ketchum KA; Boja ES; Kinsinger CR; Robles AI; Hiltke T; Thiagarajan M; Nesvizhskii AI; Zhang B; Mani DR; Ceccarelli M; Chen XS; Cottingham SL; Li QK; Kim AH; Fenyö D; Ruggles KV; Rodriguez H; Mesri M; Payne SH; Resnick AC; Wang P; Smith RD; Iavarone A; Chheda MG; Barnholtz-Sloan JS; Rodland KD; Liu T; Ding L;
    Cancer Cell; 2021 Apr; 39(4):509-528.e20. PubMed ID: 33577785
    [TBL] [Abstract] [Full Text] [Related]  

  • 16. Cellular Mechanisms Triggered by the Cotreatment of Resveratrol and Doxorubicin in breast cancer: A Translational In Vitro-In Silico Model.
    Vargas JE; Puga R; Lenz G; Trindade C; Filippi-Chiela E
    Oxid Med Cell Longev; 2020; 2020():5432651. PubMed ID: 33204396
    [TBL] [Abstract] [Full Text] [Related]  

  • 17. Comparative efficacy and safety of tyrosine kinase inhibitors for thyroid cancer: a systematic review and meta-analysis.
    Oba T; Chino T; Soma A; Shimizu T; Ono M; Ito T; Kanai T; Maeno K; Ito KI
    Endocr J; 2020 Dec; 67(12):1215-1226. PubMed ID: 32814730
    [TBL] [Abstract] [Full Text] [Related]  

  • 18. Advances in molecular mechanisms of drugs affecting abnormal glycosylation and metastasis of breast cancer.
    Liu H; Ma L; Lin J; Cao B; Qu D; Luo C; Huang W; Han L; Xu H; Wu Z; Xu R; Zhang D
    Pharmacol Res; 2020 May; 155():104738. PubMed ID: 32151681
    [TBL] [Abstract] [Full Text] [Related]  

  • 19. Inhibition of the transcriptional kinase CDK7 overcomes therapeutic resistance in HER2-positive breast cancers.
    Sun B; Mason S; Wilson RC; Hazard SE; Wang Y; Fang R; Wang Q; Yeh ES; Yang M; Roberts TM; Zhao JJ; Wang Q
    Oncogene; 2020 Jan; 39(1):50-63. PubMed ID: 31462705
    [TBL] [Abstract] [Full Text] [Related]  

  • 20. The Support, Education, and Advocacy (SEA) Program of Care for Women With Metastatic breast cancer: A Nurse-Led Palliative Care Demonstration Program.
    Reiser V; Rosenzweig M; Welsh A; Ren D; Usher B
    Am J Hosp Palliat Care; 2019 Oct; 36(10):864-870. PubMed ID: 30974954
    [TBL] [Abstract] [Full Text] [Related]  


    [Next]

    of 3.