BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

Terms: = Colorectal cancer AND KLK2, P20151, 3817, ENSG00000167751, MGC12201, hK2, KLK2A2
83 results:

  • 1. Predictive significance of glycolysis-associated lncRNA profiles in colorectal cancer progression.
    Mao R; Xu C; Zhang Q; Wang Z; Liu Y; Peng Y; Li M
    BMC Med Genomics; 2024 Apr; 17(1):112. PubMed ID: 38685060
    [TBL] [Abstract] [Full Text] [Related]  

  • 2. PDCD4-induced oxidative stress through FGR/NF-κB axis in rectal cancer radiotherapy-induced AKI.
    Ma Q; Zheng L; Cheng H; Li X; Liu Z; Gong P
    Int Immunopharmacol; 2024 May; 132():111779. PubMed ID: 38581987
    [TBL] [Abstract] [Full Text] [Related]  

  • 3. α‑Phellandrene enhances the apoptosis of HT‑29 cells induced by 5‑fluorouracil by modulating the mitochondria‑dependent pathway.
    Susanto AC; Hartajanie L; Wu CC
    Oncol Rep; 2024 Apr; 51(4):. PubMed ID: 38456489
    [TBL] [Abstract] [Full Text] [Related]  

  • 4. STING is a cell-intrinsic metabolic checkpoint restricting aerobic glycolysis by targeting hk2.
    Zhang L; Jiang C; Zhong Y; Sun K; Jing H; Song J; Xie J; Zhou Y; Tian M; Zhang C; Sun X; Wang S; Cheng X; Zhang Y; Wei W; Li X; Fu B; Feng P; Wu B; Shu HB; Zhang J
    Nat Cell Biol; 2023 Aug; 25(8):1208-1222. PubMed ID: 37443289
    [TBL] [Abstract] [Full Text] [Related]  

  • 5. Aspirin induces immunogenic cell death and enhances cancer immunotherapy in colorectal cancer.
    Lei J; Zhou Z; Fang J; Sun Z; He M; He B; Chen Q; Paek C; Chen P; Zhou J; Wang H; Tang M; Yin L; Chen Y
    Int Immunopharmacol; 2023 Aug; 121():110350. PubMed ID: 37290325
    [TBL] [Abstract] [Full Text] [Related]  

  • 6. MEX3A promotes angiogenesis in colorectal cancer via glycolysis.
    Lu Y; Bi T; Zhou S; Guo M
    Libyan J Med; 2023 Dec; 18(1):2202446. PubMed ID: 37155144
    [TBL] [Abstract] [Full Text] [Related]  

  • 7. OCT1 regulates the migration of colorectal cancer cells by acting on LDHA.
    Li L; Chen W; Wu G; Sun P
    Histol Histopathol; 2024 Jan; 39(1):67-77. PubMed ID: 37014018
    [TBL] [Abstract] [Full Text] [Related]  

  • 8. Counteracting Colon cancer by Inhibiting Mitochondrial Respiration and Glycolysis with a Selective PKCδ Activator.
    Bessa C; Loureiro JB; Barros M; Isca VMS; Sardão VA; Oliveira PJ; Bernardino RL; Herman-de-Sousa C; Costa MA; Correia-de-Sá P; Alves MG; Rijo P; Saraiva L
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982784
    [TBL] [Abstract] [Full Text] [Related]  

  • 9. NR3C2 inhibits the proliferation of colorectal cancer via regulating glucose metabolism and phosphorylating AMPK.
    Liu H; Lei W; Li Z; Wang X; Zhou L
    J Cell Mol Med; 2023 Apr; 27(8):1069-1082. PubMed ID: 36950803
    [TBL] [Abstract] [Full Text] [Related]  

  • 10. CircRNAs: emerging factors for regulating glucose metabolism in colorectal cancer.
    Liu Y; Jiang C; Liu Q; Huang R; Wang M; Guo X
    Clin Transl Oncol; 2023 Aug; 25(8):2321-2331. PubMed ID: 36944731
    [TBL] [Abstract] [Full Text] [Related]  

  • 11. SETD8 promotes glycolysis in colorectal cancer via regulating HIF1α/hk2 axis.
    Ke B; Ye K
    Tissue Cell; 2023 Jun; 82():102065. PubMed ID: 36921492
    [TBL] [Abstract] [Full Text] [Related]  

  • 12. Circ-CCS regulates oxaliplatin resistance via targeting miR-874-3p/hk2 axis in colorectal cancer.
    Qiu X; Xu Q; Liao B; Hu S; Zhou Y; Zhang H
    Histol Histopathol; 2023 Oct; 38(10):1145-1156. PubMed ID: 36519522
    [TBL] [Abstract] [Full Text] [Related]  

  • 13. Risks of malignancies among patients with psoriasis: A cohort study of 360 patients.
    Watanabe T; Watanabe Y; Asai C; Asami M; Watanabe Y; Saigusa Y; Yamaguchi Y
    J Dermatol; 2023 May; 50(5):615-621. PubMed ID: 36412216
    [TBL] [Abstract] [Full Text] [Related]  

  • 14. Rac1 promotes the reprogramming of glucose metabolism and the growth of colon cancer cells through upregulating SOX9.
    Liang J; Liu Q; Xia L; Lin J; Oyang L; Tan S; Peng Q; Jiang X; Xu X; Wu N; Tang Y; Su M; Luo X; Yang Y; Liao Q; Zhou Y
    Cancer Sci; 2023 Mar; 114(3):822-836. PubMed ID: 36369902
    [TBL] [Abstract] [Full Text] [Related]  

  • 15. Molecular Pathogenesis of colorectal cancer: Impact of Oncogenic Targets Regulated by Tumor Suppressive
    Yasudome R; Seki N; Asai S; Goto Y; Kita Y; Hozaka Y; Wada M; Tanabe K; Idichi T; Mori S; Ohtsuka T
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232922
    [TBL] [Abstract] [Full Text] [Related]  

  • 16. MSC-Derived exosomes suppress colorectal cancer cell proliferation and metastasis via miR-100/mTOR/miR-143 pathway.
    Jahangiri B; Khalaj-Kondori M; Asadollahi E; Purrafee Dizaj L; Sadeghizadeh M
    Int J Pharm; 2022 Nov; 627():122214. PubMed ID: 36152993
    [TBL] [Abstract] [Full Text] [Related]  

  • 17. Membrane-associated RING-CH protein (MARCH8) is a novel glycolysis repressor targeted by miR-32 in colorectal cancer.
    Wang Z; Wang MM; Geng Y; Ye CY; Zang YS
    J Transl Med; 2022 Sep; 20(1):402. PubMed ID: 36064706
    [TBL] [Abstract] [Full Text] [Related]  

  • 18. Hsa_circ_0045932 regulates the progression of colorectal cancer by regulating hk2 through sponging miR-873-5p.
    Hong F; Deng Z; Tie R; Yang S
    J Clin Lab Anal; 2022 Sep; 36(9):e24641. PubMed ID: 35949038
    [TBL] [Abstract] [Full Text] [Related]  

  • 19. NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer.
    Jing Z; Liu Q; He X; Jia Z; Xu Z; Yang B; Liu P
    J Exp Clin Cancer Res; 2022 Jun; 41(1):198. PubMed ID: 35689245
    [TBL] [Abstract] [Full Text] [Related]  

  • 20. N
    Li Y; He L; Wang Y; Tan Y; Zhang F
    Bioengineered; 2022 May; 13(5):11923-11932. PubMed ID: 35546050
    [TBL] [Abstract] [Full Text] [Related]  


    [Next]

    of 5.