BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

Terms: = Germ cell tumor AND CDKN2A, CDK4I, 1029, ENSG00000147889, P42771, p14, CMM2, ARF, TP16, p16, MTS1, p19, p16INK4a, INK4a, CDKN2, p16INK4, p14ARF, MLM, INK4 AND Treatment
417 results:

  • 1. Glioblastoma Therapy: Past, Present and Future.
    Obrador E; Moreno-Murciano P; Oriol-Caballo M; López-Blanch R; Pineda B; Gutiérrez-Arroyo JL; Loras A; Gonzalez-Bonet LG; Martinez-Cadenas C; Estrela JM; Marqués-Torrejón MÁ
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473776
    [TBL] [Abstract] [Full Text] [Related]  

  • 2. cdkn2a promoter methylation enhances self-renewal of glioblastoma stem cells and confers resistance to carmustine.
    Wang J; Xi YF; Zhao Q; Guo JH; Zhang Z; Zhang MB; Chang J; Wu YQ; Su W
    Mol Biol Rep; 2024 Mar; 51(1):385. PubMed ID: 38438773
    [TBL] [Abstract] [Full Text] [Related]  

  • 3. METTL14-Mediated m6a Modification of cdkn2a Promotes the Development of Retinoblastoma by Inhibiting the p53 Pathway.
    Chen J; Zeng B
    Crit Rev Immunol; 2024; 44(3):89-98. PubMed ID: 38421707
    [TBL] [Abstract] [Full Text] [Related]  

  • 4. GlioPredictor: a deep learning model for identification of high-risk adult IDH-mutant glioma towards adjuvant treatment planning.
    Zheng S; Rammohan N; Sita T; Teo PT; Wu Y; Lesniak M; Sachdev S; Thomas TO
    Sci Rep; 2024 Jan; 14(1):2126. PubMed ID: 38267516
    [TBL] [Abstract] [Full Text] [Related]  

  • 5. Characterization of a Preclinical In Vitro Model Derived from a SMARCA4-Mutated Sinonasal Teratocarcinosarcoma.
    Lorenzo-Guerra SL; Codina-Martínez H; Suárez-Fernández L; Cabal VN; García-Marín R; Riobello C; Vivanco B; Blanco-Lorenzo V; Sánchez-Fernández P; López F; Llorente JL; Hermsen MA
    Cells; 2023 Dec; 13(1):. PubMed ID: 38201285
    [TBL] [Abstract] [Full Text] [Related]  

  • 6. Improved prognostic stratification of patients with isocitrate dehydrogenase-mutant astrocytoma.
    Weller M; Felsberg J; Hentschel B; Gramatzki D; Kubon N; Wolter M; Reusche M; Roth P; Krex D; Herrlinger U; Westphal M; Tonn JC; Regli L; Maurage CA; von Deimling A; Pietsch T; Le Rhun E; Reifenberger G
    Acta Neuropathol; 2024 Jan; 147(1):11. PubMed ID: 38183430
    [TBL] [Abstract] [Full Text] [Related]  

  • 7. Real-World comprehensive genomic profiling data for diagnostic clarity in pulmonary Large-cell neuroendocrine carcinoma.
    Burns L; Tukachinsky H; Raskina K; Huang RSP; Schrock AB; Sands J; Kulke MH; Oxnard GR; Tapan U
    Lung Cancer; 2024 Feb; 188():107454. PubMed ID: 38159439
    [TBL] [Abstract] [Full Text] [Related]  

  • 8. Prioritization of Fluorescence In Situ Hybridization (FISH) Probes for Differentiating Primary Sites of Neuroendocrine tumors with Machine Learning.
    Pietan L; Vaughn H; Howe JR; Bellizzi AM; Smith BJ; Darbro B; Braun T; Casavant T
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139230
    [TBL] [Abstract] [Full Text] [Related]  

  • 9. "De novo replication repair deficient glioblastoma, IDH-wildtype" is a distinct glioblastoma subtype in adults that may benefit from immune checkpoint blockade.
    Hadad S; Gupta R; Oberheim Bush NA; Taylor JW; Villanueva-Meyer JE; Young JS; Wu J; Ravindranathan A; Zhang Y; Warrier G; McCoy L; Shai A; Pekmezci M; Perry A; Bollen AW; Phillips JJ; Braunstein SE; Raleigh DR; Theodosopoulos P; Aghi MK; Chang EF; Hervey-Jumper SL; Costello JF; de Groot J; Butowski NA; Clarke JL; Chang SM; Berger MS; Molinaro AM; Solomon DA
    Acta Neuropathol; 2023 Dec; 147(1):3. PubMed ID: 38079020
    [TBL] [Abstract] [Full Text] [Related]  

  • 10. ERK hyperactivation serves as a unified mechanism of escape in intrinsic and acquired CDK4/6 inhibitor resistance in acral lentiginous melanoma.
    Jagirdar K; Portuallo ME; Wei M; Wilhide M; Bravo Narula JA; Robertson BM; Alicea GM; Aguh C; Xiao M; Godok T; Fingerman D; Brown GS; Herlyn M; Elad VM; Guo X; Toska E; Zabransky DJ; Wubbenhorst B; Nathanson KL; Kwatra S; Goyal Y; Ji H; Liu Q; Rebecca VW
    Oncogene; 2024 Feb; 43(6):395-405. PubMed ID: 38066089
    [TBL] [Abstract] [Full Text] [Related]  

  • 11. Genomic characterization of IDH-mutant astrocytoma progression to grade 4 in the treatment setting.
    Rautajoki KJ; Jaatinen S; Hartewig A; Tiihonen AM; Annala M; Salonen I; Valkonen M; Simola V; Vuorinen EM; Kivinen A; Rauhala MJ; Nurminen R; Maass KK; Lahtela SL; Jukkola A; Yli-Harja O; Helén P; Pajtler KW; Ruusuvuori P; Haapasalo J; Zhang W; Haapasalo H; Nykter M
    Acta Neuropathol Commun; 2023 Nov; 11(1):176. PubMed ID: 37932833
    [TBL] [Abstract] [Full Text] [Related]  

  • 12. Diagnostic Challenges and Long-term Outcomes of Neuroendocrine Carcinoma of the Cervix: A Case Series.
    Lamiman K; Wilhelm AB; Eyzaguirre E; Richardson G
    Int J Gynecol Pathol; 2024 Mar; 43(2):149-157. PubMed ID: 37922936
    [TBL] [Abstract] [Full Text] [Related]  

  • 13. Identifying predictors of glioma evolution from longitudinal sequencing.
    Mu Q; Chai R; Pang B; Yang Y; Liu H; Zhao Z; Bao Z; Song D; Zhu Z; Yan M; Jiang B; Mo Z; Tang J; Sa JK; Cho HJ; Chang Y; Chan KHY; Loi DSC; Tam SST; Chan AKY; Wu AR; Liu Z; Poon WS; Ng HK; Chan DTM; Iavarone A; Nam DH; Jiang T; Wang J
    Sci Transl Med; 2023 Oct; 15(716):eadh4181. PubMed ID: 37792958
    [TBL] [Abstract] [Full Text] [Related]  

  • 14. Genetic insights into thymic carcinomas and thymic neuroendocrine neoplasms denote prognosis signatures and pathways.
    Wang S; Gu Z; Zhu L; Han Y; Yu H; Fang W; Han B
    Chin Med J (Engl); 2023 Nov; 136(22):2712-2721. PubMed ID: 37749819
    [TBL] [Abstract] [Full Text] [Related]  

  • 15. A novel MRI-based deep learning networks combined with attention mechanism for predicting cdkn2a/B homozygous deletion status in IDH-mutant astrocytoma.
    Zhang L; Wang R; Gao J; Tang Y; Xu X; Kan Y; Cao X; Wen Z; Liu Z; Cui S; Li Y
    Eur Radiol; 2024 Jan; 34(1):391-399. PubMed ID: 37553486
    [TBL] [Abstract] [Full Text] [Related]  

  • 16. A threshold for mitotic activity and post-surgical residual volume defines distinct prognostic groups for astrocytoma IDH-mutant.
    Tran S; Thomas A; Aliouat I; Karachi C; Lozano F; Mokhtari K; Dehais C; Feuvret L; Carpentier C; Giry M; Doukani A; Lerond J; Marie Y; Sanson M; Idbaih A; Carpentier A; Hoang-Xuan K; Touat M; Capelle L; Bielle F
    Neuropathol Appl Neurobiol; 2023 Aug; 49(4):e12928. PubMed ID: 37503540
    [TBL] [Abstract] [Full Text] [Related]  

  • 17. DNA methylation, combined with RNA sequencing, provide novel insight into molecular classification of chordomas and their microenvironment.
    Baluszek S; Kober P; Rusetska N; Wągrodzki M; Mandat T; Kunicki J; Bujko M
    Acta Neuropathol Commun; 2023 Jul; 11(1):113. PubMed ID: 37434245
    [TBL] [Abstract] [Full Text] [Related]  

  • 18. Compensatory cross-talk between autophagy and glycolysis regulates senescence and stemness in heterogeneous glioblastoma tumor subpopulations.
    Martell E; Kuzmychova H; Senthil H; Kaul E; Chokshi CR; Venugopal C; Anderson CM; Singh SK; Sharif T
    Acta Neuropathol Commun; 2023 Jul; 11(1):110. PubMed ID: 37420311
    [TBL] [Abstract] [Full Text] [Related]  

  • 19. Pediatric Precision Medicine at the National Cancer Center Japan: Prospective Genomic Study of Pediatric Patients with Cancer as Part of the TOP-GEAR Project.
    Tao K; Yamazaki F; Kubo T; Sunami K; Kumamoto T; Arakawa A; Sugiyama M; Watanabe Y; Nakajima M; Shirakawa N; Tanimura K; Koyama T; Hirata M; Sudo K; Tanabe N; Watanabe T; Yoshida T; Kitami M; Yoshida A; Yatabe Y; Nakano Y; Ohira M; Kamijo T; Nakazawa A; Kato M; Ichimura K; Kohno T; Yamamoto N; Hishiki T; Ichikawa H; Ogawa C
    JCO Precis Oncol; 2023 Jul; 7():e2200266. PubMed ID: 37410973
    [TBL] [Abstract] [Full Text] [Related]  

  • 20. The Assessment of Anti-Melanoma Potential of Tigecycline-cellular and Molecular Studies of cell Proliferation, Apoptosis and Autophagy on Amelanotic and Melanotic Melanoma cells.
    Rok J; Kowalska J; Rzepka Z; Stencel D; Skorek A; Banach K; Wrześniok D
    Cells; 2023 Jun; 12(12):. PubMed ID: 37371034
    [TBL] [Abstract] [Full Text] [Related]  


    [Next]

    of 21.