BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

Terms: = Germ cell tumor AND U2AF1, ENSG00000160201, 7307, Q01081, U2AFBP, U2AF35, RNU2AF1, RN, FP793, DKFZp313J1712 AND Diagnosis
18 results:

  • 1. Schwannoma of the radial nerve: a case report.
    Hamdaoui J; Elkamch H; Gharib N; El Mazouz S; Abbassi A; Hafidi J
    Pan Afr Med J; 2022; 43():139. PubMed ID: 36762153
    [TBL] [Abstract] [Full Text] [Related]  

  • 2. Machine learning imaging applications in the differentiation of true tumour progression from treatment-related effects in brain tumours: A systematic review and meta-analysis.
    Bhandari A; Marwah R; Smith J; Nguyen D; Bhatti A; Lim CP; Lasocki A
    J Med Imaging Radiat Oncol; 2022 Sep; 66(6):781-797. PubMed ID: 35599360
    [TBL] [Abstract] [Full Text] [Related]  

  • 3. Pathological and genomic phenotype of second neuroendocrine carcinoma during long-term follow-up after radical radiotherapy for nasopharyngeal carcinoma.
    Peng YP; Liu QD; Lin YJ; Peng SL; Wang R; Xu XW; Wei W; Zhong GH; Zhou YL; Zhang YQ; Liu Y; Wang SY; Hong HY; Liu ZG
    Radiat Oncol; 2021 Oct; 16(1):198. PubMed ID: 34635145
    [TBL] [Abstract] [Full Text] [Related]  

  • 4. Renal Primitive Neuroectodermal tumor With Inferior Vena Cava Thrombus: Case Series and Literature Review of a Rare but Challenging Entity.
    Xu C; Sun Z; Xiao R; He W; Ma L
    Clin Genitourin Cancer; 2021 Oct; 19(5):e273-e279. PubMed ID: 33941490
    [TBL] [Abstract] [Full Text] [Related]  

  • 5. Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation.
    Park YW; Choi D; Park JE; Ahn SS; Kim H; Chang JH; Kim SH; Kim HS; Lee SK
    Sci Rep; 2021 Feb; 11(1):2913. PubMed ID: 33536499
    [TBL] [Abstract] [Full Text] [Related]  

  • 6. 2-[
    Verhoeven J; Baguet T; Piron S; Pauwelyn G; Bouckaert C; Descamps B; Raedt R; Vanhove C; De Vos F; Goethals I
    Nucl Med Biol; 2020; 82-83():9-16. PubMed ID: 31841816
    [TBL] [Abstract] [Full Text] [Related]  

  • 7. A multi-institutional analysis of clinical outcomes and patterns of care of 1p/19q codeleted oligodendrogliomas treated with adjuvant or salvage radiation therapy.
    Lin AJ; Kane LT; Molitoris JK; Smith DR; Dahiya S; Badiyan SN; Wang TJC; Kruser TJ; Huang J
    J Neurooncol; 2020 Jan; 146(1):121-130. PubMed ID: 31741234
    [TBL] [Abstract] [Full Text] [Related]  

  • 8. Radiation Necrosis and White Matter Lesions in Pediatric Patients With Brain tumors Treated With Pencil Beam Scanning Proton Therapy.
    Bojaxhiu B; Ahlhelm F; Walser M; Placidi L; Kliebsch U; Mikroutsikos L; Morach P; Bolsi A; Lomax T; Pica A; Weber DC
    Int J Radiat Oncol Biol Phys; 2018 Mar; 100(4):987-996. PubMed ID: 29485079
    [TBL] [Abstract] [Full Text] [Related]  

  • 9. Role of FDG-PET/MRI, FDG-PET/CT, and Dynamic Susceptibility Contrast Perfusion MRI in Differentiating Radiation Necrosis from tumor Recurrence in Glioblastomas.
    Hojjati M; Badve C; Garg V; Tatsuoka C; Rogers L; Sloan A; Faulhaber P; Ros PR; Wolansky LJ
    J Neuroimaging; 2018 Jan; 28(1):118-125. PubMed ID: 28718993
    [TBL] [Abstract] [Full Text] [Related]  

  • 10. Management of Cerebral Radiation Necrosis: A Retrospective Study of 12 Patients.
    Liao C; Visocchi M; Zhang W; Yang M; Zhong W; Liu P
    Acta Neurochir Suppl; 2017; 124():195-201. PubMed ID: 28120074
    [TBL] [Abstract] [Full Text] [Related]  

  • 11. BRAF inhibitor and stereotactic radiosurgery is associated with an increased risk of radiation necrosis.
    Patel KR; Chowdhary M; Switchenko JM; Kudchadkar R; Lawson DH; Cassidy RJ; Prabhu RS; Khan MK
    Melanoma Res; 2016 Aug; 26(4):387-94. PubMed ID: 27223498
    [TBL] [Abstract] [Full Text] [Related]  

  • 12. Performance of SPECT in the differential diagnosis of glioma recurrence from radiation necrosis.
    Zhang H; Ma L; Wu C; Xu BN
    J Clin Neurosci; 2015 Feb; 22(2):229-37. PubMed ID: 25443083
    [TBL] [Abstract] [Full Text] [Related]  

  • 13. Bevacizumab treatment leads to observable morphological and metabolic changes in brain radiation necrosis.
    Yonezawa S; Miwa K; Shinoda J; Nomura Y; Asano Y; Nakayama N; Ohe N; Yano H; Iwama T
    J Neurooncol; 2014 Aug; 119(1):101-9. PubMed ID: 24789256
    [TBL] [Abstract] [Full Text] [Related]  

  • 14. Comparison of (11)C-methionine, (11)C-choline, and (18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis.
    Takenaka S; Asano Y; Shinoda J; Nomura Y; Yonezawa S; Miwa K; Yano H; Iwama T
    Neurol Med Chir (Tokyo); 2014; 54(4):280-9. PubMed ID: 24305028
    [TBL] [Abstract] [Full Text] [Related]  

  • 15. [The role of PET-FDG in questionable diagnosis of relapse in the presence of radionecrosis of brain tumors].
    Asensio C; Pérez-Castejón MJ; Maldonado A; Montz R; Ruiz JA; Santos M; García-Berrocal I; Albert J; Carreras JL
    Rev Neurol; 1998 Sep; 27(157):447-52. PubMed ID: 9774817
    [TBL] [Abstract] [Full Text] [Related]  

  • 16. Establishment and characterization of a human neuroblastoma cell line.
    Scarpa S; Dominici C; Grammatico P; Del Porto G; Raschellà G; Castello M; Forni G; Modesti A
    Int J Cancer; 1989 Apr; 43(4):645-51. PubMed ID: 2703273
    [TBL] [Abstract] [Full Text] [Related]  

  • 17. The reliability of noninvasive diagnostic procedures in children with brain tumors.
    Weinblatt ME; Ortega JA; Miller JH; Fishman LS
    Am J Pediatr Hematol Oncol; 1982; 4(4):367-73. PubMed ID: 7168487
    [TBL] [Abstract] [Full Text] [Related]  

  • 18. Relative efficacy of radionuclide imaging and computed tomography of the brain.
    Pendergrass HP; McKusick KA; New PF; Potsaid MS
    Radiology; 1975 Aug; 116(02):363-6. PubMed ID: 1153738
    [TBL] [Abstract] [Full Text] [Related]  


    of 1.