BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

Terms: = Head and neck cancer AND TRIM33, RFG7, 51592, ENSG00000197323, Q9UPN9, TF1G, FLJ32925, TIF1G, PTC7, TIFGAMMA, TIF1GAMMA
13 results:

  • 1. Deubiquitinase YOD1 suppresses tumor progression by stabilizing E3 ligase trim33 in head and neck squamous cell carcinoma.
    Wu Y; Duan Y; Han W; Cao J; Ye B; Chen P; Li H; Wang Y; Liu J; Fang Y; Yue K; Wu Y; Wang X; Jing C
    Cell Death Dis; 2023 Aug; 14(8):517. PubMed ID: 37573347
    [TBL] [Abstract] [Full Text] [Related]  

  • 2. Anti-TIF1γ antibody-positive dermatomyositis associated with nivolumab administration in a patient with advanced oesophageal squamous cell carcinoma: A case report and literature review.
    Sakurai T; Takahashi J; Komatsu T; Mitsumura H; Iguchi Y
    Mod Rheumatol Case Rep; 2023 Jun; 7(2):416-421. PubMed ID: 36715286
    [TBL] [Abstract] [Full Text] [Related]  

  • 3. Frankly Invasive Carcinoma Ex-intraductal Carcinoma: Expanding on an Emerging and Perplexing Concept in Salivary Gland Tumor Pathology.
    McLean-Holden AC; Rooper LM; Lubin DJ; Magliocca KR; Manucha V; Sadow PM; Tobias J; Vargo RJ; Thompson LDR; Heidarian A; Weinreb I; Wenig B; Gagan J; Hernandez-Prera JC; Bishop JA
    Head Neck Pathol; 2022 Sep; 16(3):657-669. PubMed ID: 34985683
    [TBL] [Abstract] [Full Text] [Related]  

  • 4. Oncocytic intraductal carcinoma of salivary glands: a distinct variant with trim33-RET fusions and BRAF V600E mutations.
    Bishop JA; Nakaguro M; Whaley RD; Ogura K; Imai H; Laklouk I; Faquin WC; Sadow PM; Gagan J; Nagao T
    Histopathology; 2021 Sep; 79(3):338-346. PubMed ID: 33135196
    [TBL] [Abstract] [Full Text] [Related]  

  • 5. Clinical features of anti-transcription intermediary factor 1γ (TIF1γ)-positive dermatomyositis with internal malignancy and investigation of the involvement of TIF1γ expression in tumors in the pathogenesis of cancer-associated dermatomyositis.
    Motegi SI; Sekiguchi A; Ikeuchi H; Sakairi T; Ogawa H; Fujii T; Sohda M; Yajima T; Ida S; Takayasu Y; Shimoda Y; Hiromura K; Saeki H; Shirabe K; Chikamatsu K; Yokoo H; Oyama T; Ishikawa O
    J Dermatol; 2020 Dec; 47(12):1395-1402. PubMed ID: 32734678
    [TBL] [Abstract] [Full Text] [Related]  

  • 6. A Case of Dermatomyositis Along with Esophageal cancer and Screening of Serum Transcriptional Intermediary Factor 1 Gamma Antibodies in Various cancer Patients.
    Sumazaki M; Kaneko K; Ito M; Oshima Y; Saito F; Ogata H; Shibuya K; Shimada H
    Am J Case Rep; 2020 Apr; 21():e922004. PubMed ID: 32312948
    [TBL] [Abstract] [Full Text] [Related]  

  • 7. Next-generation sequencing in salivary gland carcinoma: Targetable alterations lead to a therapeutic advantage-Multicenter experience.
    Moore A; Bar Y; Maurice-Dror C; Ospovat I; Sarfaty M; Korzets Y; Goldvaser H; Gordon N; Billan S; Gutfeld O; Popovtzer A
    Head Neck; 2020 Apr; 42(4):599-607. PubMed ID: 31762146
    [TBL] [Abstract] [Full Text] [Related]  

  • 8. Novel TG-FGFR1 and trim33-NTRK1 transcript fusions in papillary thyroid carcinoma.
    Pfeifer A; Rusinek D; Żebracka-Gala J; Czarniecka A; Chmielik E; Zembala-Nożyńska E; Wojtaś B; Gielniewski B; Szpak-Ulczok S; Oczko-Wojciechowska M; Krajewska J; Polańska J; Jarząb B
    Genes Chromosomes Cancer; 2019 Aug; 58(8):558-566. PubMed ID: 30664823
    [TBL] [Abstract] [Full Text] [Related]  

  • 9. Genomic analysis of head and neck squamous cell carcinoma cell lines and human tumors: a rational approach to preclinical model selection.
    Li H; Wawrose JS; Gooding WE; Garraway LA; Lui VW; Peyser ND; Grandis JR
    Mol Cancer Res; 2014 Apr; 12(4):571-82. PubMed ID: 24425785
    [TBL] [Abstract] [Full Text] [Related]  

  • 10. Gene rearrangements in radiation-induced thyroid carcinogenesis.
    Rabes HM
    Med Pediatr Oncol; 2001 May; 36(5):574-82. PubMed ID: 11340615
    [TBL] [Abstract] [Full Text] [Related]  

  • 11. Translocation t(10;14)(q11.2:q22.1) fusing the kinetin to the RET gene creates a novel rearranged form (PTC8) of the RET proto-oncogene in radiation-induced childhood papillary thyroid carcinoma.
    Salassidis K; Bruch J; Zitzelsberger H; Lengfelder E; Kellerer AM; Bauchinger M
    Cancer Res; 2000 Jun; 60(11):2786-9. PubMed ID: 10850414
    [TBL] [Abstract] [Full Text] [Related]  

  • 12. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications.
    Rabes HM; Demidchik EP; Sidorow JD; Lengfelder E; Beimfohr C; Hoelzel D; Klugbauer S
    Clin Cancer Res; 2000 Mar; 6(3):1093-103. PubMed ID: 10741739
    [TBL] [Abstract] [Full Text] [Related]  

  • 13. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas.
    Klugbauer S; Rabes HM
    Oncogene; 1999 Jul; 18(30):4388-93. PubMed ID: 10439047
    [TBL] [Abstract] [Full Text] [Related]  


    of 1.