BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

Terms: = Kidney tumors AND CTCF, P49711, 10664, ENSG00000102974
24 results:

  • 1. A comprehensive investigation discovered the novel methyltransferase METTL24 as one presumably prognostic gene for kidney renal clear cell carcinoma potentially modulating tumor immune microenvironment.
    Jiang Z; Zhang W; Zeng Z; Tang D; Li C; Cai W; Chen Y; Li Y; Jin Q; Zhang X; Yin L; Liu X; Xu Y; Dai Y
    Front Immunol; 2022; 13():926461. PubMed ID: 36311770
    [TBL] [Abstract] [Full Text] [Related]  

  • 2. Germline variant in ctcf links mental retardation to Wilms tumor predisposition.
    Gargallo P; Oltra S; Tasso M; Balaguer J; Yáñez Y; Dolz S; Calabria I; Martínez F; Segura V; Juan-Ribelles A; Llavador M; Castel V; Cañete A; Font de Mora J
    Eur J Hum Genet; 2022 Nov; 30(11):1288-1291. PubMed ID: 35459888
    [TBL] [Abstract] [Full Text] [Related]  

  • 3. CircESRP1 inhibits clear cell renal cell carcinoma progression through the ctcf-mediated positive feedback loop.
    Gong LJ; Wang XY; Yao XD; Wu X; Gu WY
    Cell Death Dis; 2021 Nov; 12(11):1081. PubMed ID: 34775467
    [TBL] [Abstract] [Full Text] [Related]  

  • 4. QPCT regulation by ctcf leads to sunitinib resistance in renal cell carcinoma by promoting angiogenesis.
    Zhao T; Zhou Y; Wang Q; Yi X; Ge S; He H; Xue S; Du B; Ge J; Dong J; Qu L; Wang L; Zhou W
    Int J Oncol; 2021 Jul; 59(1):. PubMed ID: 34036385
    [TBL] [Abstract] [Full Text] [Related]  

  • 5. The cancer driver genes IDH1/2, JARID1C/ KDM5C, and UTX/ KDM6A: crosstalk between histone demethylation and hypoxic reprogramming in cancer metabolism.
    Chang S; Yim S; Park H
    Exp Mol Med; 2019 Jun; 51(6):1-17. PubMed ID: 31221981
    [TBL] [Abstract] [Full Text] [Related]  

  • 6. CRISPR/Cas9 offers a new tool for studying the role of chromatin architecture in disease pathogenesis.
    Guo X; Dean A
    Genome Biol; 2018 Nov; 19(1):185. PubMed ID: 30400943
    [TBL] [Abstract] [Full Text] [Related]  

  • 7. A high-resolution transcriptome map of cell cycle reveals novel connections between periodic genes and cancer.
    Dominguez D; Tsai YH; Gomez N; Jha DK; Davis I; Wang Z
    Cell Res; 2016 Aug; 26(8):946-62. PubMed ID: 27364684
    [TBL] [Abstract] [Full Text] [Related]  

  • 8. A genetic polymorphism affects the risk and prognosis of renal cell carcinoma: association with follistatin-like protein 1 expression.
    Liu Y; Han X; Yu Y; Ding Y; Ni C; Liu W; Hou X; Li Z; Hou J; Shen D; Yin J; Zhang H; Thompson TC; Tan X; Cao G
    Sci Rep; 2016 May; 6():26689. PubMed ID: 27225192
    [TBL] [Abstract] [Full Text] [Related]  

  • 9. Harnessing the p53-PUMA axis to overcome DNA damage resistance in renal cell carcinoma.
    Zhou X; Tolstov Y; Arslan A; Roth W; Grüllich C; Pahernik S; Hohenfellner M; Duensing S
    Neoplasia; 2014 Dec; 16(12):1028-35. PubMed ID: 25499216
    [TBL] [Abstract] [Full Text] [Related]  

  • 10. Characterizing the genetic basis of methylome diversity in histologically normal human lung tissue.
    Shi J; Marconett CN; Duan J; Hyland PL; Li P; Wang Z; Wheeler W; Zhou B; Campan M; Lee DS; Huang J; Zhou W; Triche T; Amundadottir L; Warner A; Hutchinson A; Chen PH; Chung BS; Pesatori AC; Consonni D; Bertazzi PA; Bergen AW; Freedman M; Siegmund KD; Berman BP; Borok Z; Chatterjee N; Tucker MA; Caporaso NE; Chanock SJ; Laird-Offringa IA; Landi MT
    Nat Commun; 2014 Feb; 5():3365. PubMed ID: 24572595
    [TBL] [Abstract] [Full Text] [Related]  

  • 11. Frequent hypermethylation of a ctcf binding site influences Wilms tumor 1 expression in Wilms tumors.
    Zitzmann F; Mayr D; Berger M; Stehr M; von Schweinitz D; Kappler R; Hubertus J
    Oncol Rep; 2014 Apr; 31(4):1871-6. PubMed ID: 24534946
    [TBL] [Abstract] [Full Text] [Related]  

  • 12. Fine mapping genetic determinants of the highly variably expressed MHC gene ZFP57.
    Plant K; Fairfax BP; Makino S; Vandiedonck C; Radhakrishnan J; Knight JC
    Eur J Hum Genet; 2014 Apr; 22(4):568-71. PubMed ID: 24193346
    [TBL] [Abstract] [Full Text] [Related]  

  • 13. Selective methylation of CpGs at regulatory binding sites controls NNAT expression in Wilms tumors.
    Hubertus J; Zitzmann F; Trippel F; Müller-Höcker J; Stehr M; von Schweinitz D; Kappler R
    PLoS One; 2013; 8(6):e67605. PubMed ID: 23825673
    [TBL] [Abstract] [Full Text] [Related]  

  • 14. BORIS in human cancers -- a review.
    Martin-Kleiner I
    Eur J Cancer; 2012 Apr; 48(6):929-35. PubMed ID: 22019212
    [TBL] [Abstract] [Full Text] [Related]  

  • 15. Duplication of the paternal IGF2 allele in trisomy 11 and elevated expression levels of IGF2 mRNA in congenital mesoblastic nephroma of the cellular or mixed type.
    Watanabe N; Haruta M; Soejima H; Fukushi D; Yokomori K; Nakadate H; Okita H; Hata JI; Fukuzawa M; Kaneko Y
    Genes Chromosomes Cancer; 2007 Oct; 46(10):929-35. PubMed ID: 17639583
    [TBL] [Abstract] [Full Text] [Related]  

  • 16. A ctcf-binding silencer regulates the imprinted genes AWT1 and WT1-AS and exhibits sequential epigenetic defects during Wilms' tumourigenesis.
    Hancock AL; Brown KW; Moorwood K; Moon H; Holmgren C; Mardikar SH; Dallosso AR; Klenova E; Loukinov D; Ohlsson R; Lobanenkov VV; Malik K
    Hum Mol Genet; 2007 Feb; 16(3):343-54. PubMed ID: 17210670
    [TBL] [Abstract] [Full Text] [Related]  

  • 17. Loss of imprinting and cancer.
    Jelinic P; Shaw P
    J Pathol; 2007 Feb; 211(3):261-8. PubMed ID: 17177177
    [TBL] [Abstract] [Full Text] [Related]  

  • 18. Mechanisms causing imprinting defects in familial Beckwith-Wiedemann syndrome with Wilms' tumour.
    Sparago A; Russo S; Cerrato F; Ferraiuolo S; Castorina P; Selicorni A; Schwienbacher C; Negrini M; Ferrero GB; Silengo MC; Anichini C; Larizza L; Riccio A
    Hum Mol Genet; 2007 Feb; 16(3):254-64. PubMed ID: 17158821
    [TBL] [Abstract] [Full Text] [Related]  

  • 19. Association of 11q loss, trisomy 12, and possible 16q loss with loss of imprinting of insulin-like growth factor-II in Wilms tumor.
    Watanabe N; Nakadate H; Haruta M; Sugawara W; Sasaki F; Tsunematsu Y; Kikuta A; Fukuzawa M; Okita H; Hata J; Soejima H; Kaneko Y
    Genes Chromosomes Cancer; 2006 Jun; 45(6):592-601. PubMed ID: 16518847
    [TBL] [Abstract] [Full Text] [Related]  

  • 20. Association of chromosome arm 16q loss with loss of imprinting of insulin-like growth factor-II in Wilms tumor.
    Mummert SK; Lobanenkov VA; Feinberg AP
    Genes Chromosomes Cancer; 2005 Jun; 43(2):155-61. PubMed ID: 15761865
    [TBL] [Abstract] [Full Text] [Related]  


    [Next]

    of 2.