BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

Terms: = Kidney tumors AND DROSHA, HSA242976, 29102, RNASEN, ENSG00000113360, Q9NRR4, RNASE3L, RN3, RANSE3L, Etohi2
20 results:

  • 1. The DGCR8 E518K mutation found in Wilms tumors leads to a partial miRNA processing defect that alters gene expression patterns and biological processes.
    Vardapour R; Kehl T; Kneitz S; Ludwig N; Meese E; Lenhof HP; Gessler M
    Carcinogenesis; 2022 Mar; 43(2):82-93. PubMed ID: 34919667
    [TBL] [Abstract] [Full Text] [Related]  

  • 2. Analysis of the mutational status of SIX1/2 and microRNA processing genes in paired primary and relapsed Wilms tumors and association with relapse.
    Ciceri S; Montalvão-de-Azevedo R; Tajbakhsh A; Bertolotti A; Spagnuolo RD; Boschetti L; Capasso M; D'Angelo P; Serra A; Diomedi-Camassei F; Meli M; Nantron M; Quarello P; Buccoliero AM; Tamburini A; Ciniselli CM; Verderio P; Collini P; Radice P; Spreafico F; Perotti D
    Cancer Gene Ther; 2021 Sep; 28(9):1016-1024. PubMed ID: 33281191
    [TBL] [Abstract] [Full Text] [Related]  

  • 3. Loss or oncogenic mutation of drosha impairs kidney development and function, but is not sufficient for Wilms tumor formation.
    Kruber P; Angay O; Winkler A; Bösl MR; Kneitz S; Heinze KG; Gessler M
    Int J Cancer; 2019 Mar; 144(6):1391-1400. PubMed ID: 30367465
    [TBL] [Abstract] [Full Text] [Related]  

  • 4. TSC2 regulates microRNA biogenesis via mTORC1 and GSK3β.
    Ogórek B; Lam HC; Khabibullin D; Liu HJ; Nijmeh J; Triboulet R; Kwiatkowski DJ; Gregory RI; Henske EP
    Hum Mol Genet; 2018 May; 27(9):1654-1663. PubMed ID: 29509898
    [TBL] [Abstract] [Full Text] [Related]  

  • 5. A Children's Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor.
    Gadd S; Huff V; Walz AL; Ooms AHAG; Armstrong AE; Gerhard DS; Smith MA; Auvil JMG; Meerzaman D; Chen QR; Hsu CH; Yan C; Nguyen C; Hu Y; Hermida LC; Davidsen T; Gesuwan P; Ma Y; Zong Z; Mungall AJ; Moore RA; Marra MA; Dome JS; Mullighan CG; Ma J; Wheeler DA; Hampton OA; Ross N; Gastier-Foster JM; Arold ST; Perlman EJ
    Nat Genet; 2017 Oct; 49(10):1487-1494. PubMed ID: 28825729
    [TBL] [Abstract] [Full Text] [Related]  

  • 6. The Silencing of CCND2 by Promoter Aberrant Methylation in Renal Cell Cancer and Analysis of the Correlation between CCND2 Methylation Status and Clinical Features.
    Wang L; Cui Y; Zhang L; Sheng J; Yang Y; Kuang G; Fan Y; Zhang Q; Jin J
    PLoS One; 2016; 11(9):e0161859. PubMed ID: 27583477
    [TBL] [Abstract] [Full Text] [Related]  

  • 7. Splicing-dependent expression of microRNAs of mirtron origin in human digestive and excretory system cancer cells.
    Butkytė S; Čiupas L; Jakubauskienė E; Vilys L; Mocevicius P; Kanopka A; Vilkaitis G
    Clin Epigenetics; 2016; 8():33. PubMed ID: 27019673
    [TBL] [Abstract] [Full Text] [Related]  

  • 8. Genetic variation frequencies in Wilms' tumor: A meta-analysis and systematic review.
    Deng C; Dai R; Li X; Liu F
    Cancer Sci; 2016 May; 107(5):690-9. PubMed ID: 26892980
    [TBL] [Abstract] [Full Text] [Related]  

  • 9. Chromosomal anomalies at 1q, 3, 16q, and mutations of SIX1 and drosha genes underlie Wilms tumor recurrences.
    Spreafico F; Ciceri S; Gamba B; Torri F; Terenziani M; Collini P; Macciardi F; Radice P; Perotti D
    Oncotarget; 2016 Feb; 7(8):8908-15. PubMed ID: 26802027
    [TBL] [Abstract] [Full Text] [Related]  

  • 10. Wilms Tumor Suppressor, WT1, Cooperates with MicroRNA-26a and MicroRNA-101 to Suppress Translation of the Polycomb Protein, EZH2, in Mesenchymal Stem Cells.
    Akpa MM; Iglesias D; Chu L; Thiébaut A; Jentoft I; Hammond L; Torban E; Goodyer PR
    J Biol Chem; 2016 Feb; 291(8):3785-95. PubMed ID: 26655220
    [TBL] [Abstract] [Full Text] [Related]  

  • 11. Mutations in the SIX1/2 pathway and the drosha/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors.
    Wegert J; Ishaque N; Vardapour R; Geörg C; Gu Z; Bieg M; Ziegler B; Bausenwein S; Nourkami N; Ludwig N; Keller A; Grimm C; Kneitz S; Williams RD; Chagtai T; Pritchard-Jones K; van Sluis P; Volckmann R; Koster J; Versteeg R; Acha T; O'Sullivan MJ; Bode PK; Niggli F; Tytgat GA; van Tinteren H; van den Heuvel-Eibrink MM; Meese E; Vokuhl C; Leuschner I; Graf N; Eils R; Pfister SM; Kool M; Gessler M
    Cancer Cell; 2015 Feb; 27(2):298-311. PubMed ID: 25670083
    [TBL] [Abstract] [Full Text] [Related]  

  • 12. Recurrent DGCR8, drosha, and SIX homeodomain mutations in favorable histology Wilms tumors.
    Walz AL; Ooms A; Gadd S; Gerhard DS; Smith MA; Guidry Auvil JM; Meerzaman D; Chen QR; Hsu CH; Yan C; Nguyen C; Hu Y; Bowlby R; Brooks D; Ma Y; Mungall AJ; Moore RA; Schein J; Marra MA; Huff V; Dome JS; Chi YY; Mullighan CG; Ma J; Wheeler DA; Hampton OA; Jafari N; Ross N; Gastier-Foster JM; Perlman EJ
    Cancer Cell; 2015 Feb; 27(2):286-97. PubMed ID: 25670082
    [TBL] [Abstract] [Full Text] [Related]  

  • 13. Somatic mutations in drosha and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours.
    Rakheja D; Chen KS; Liu Y; Shukla AA; Schmid V; Chang TC; Khokhar S; Wickiser JE; Karandikar NJ; Malter JS; Mendell JT; Amatruda JF
    Nat Commun; 2014 Sep; 2():4802. PubMed ID: 25190313
    [TBL] [Abstract] [Full Text] [Related]  

  • 14. The development of Wilms tumor: from WT1 and microRNA to animal models.
    Tian F; Yourek G; Shi X; Yang Y
    Biochim Biophys Acta; 2014 Aug; 1846(1):180-7. PubMed ID: 25018051
    [TBL] [Abstract] [Full Text] [Related]  

  • 15. Recurrent somatic mutation in drosha induces microRNA profile changes in Wilms tumour.
    Torrezan GT; Ferreira EN; Nakahata AM; Barros BD; Castro MT; Correa BR; Krepischi AC; Olivieri EH; Cunha IW; Tabori U; Grundy PE; Costa CM; de Camargo B; Galante PA; Carraro DM
    Nat Commun; 2014 Jun; 5():4039. PubMed ID: 24909261
    [TBL] [Abstract] [Full Text] [Related]  

  • 16. Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells.
    Haselmann V; Kurz A; Bertsch U; Hübner S; Olempska-Müller M; Fritsch J; Häsler R; Pickl A; Fritsche H; Annewanter F; Engler C; Fleig B; Bernt A; Röder C; Schmidt H; Gelhaus C; Hauser C; Egberts JH; Heneweer C; Rohde AM; Böger C; Knippschild U; Röcken C; Adam D; Walczak H; Schütze S; Janssen O; Wulczyn FG; Wajant H; Kalthoff H; Trauzold A
    Gastroenterology; 2014 Jan; 146(1):278-90. PubMed ID: 24120475
    [TBL] [Abstract] [Full Text] [Related]  

  • 17. Accumulation of pre-let-7g and downregulation of mature let-7g with the depletion of EWS.
    Sohn EJ; Park J; Kang SI; Wu YP
    Biochem Biophys Res Commun; 2012 Sep; 426(1):89-93. PubMed ID: 22910415
    [TBL] [Abstract] [Full Text] [Related]  

  • 18. Genetic variations in microRNA-related genes are associated with survival and recurrence in patients with renal cell carcinoma.
    Lin J; Horikawa Y; Tamboli P; Clague J; Wood CG; Wu X
    Carcinogenesis; 2010 Oct; 31(10):1805-12. PubMed ID: 20732906
    [TBL] [Abstract] [Full Text] [Related]  

  • 19. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1.
    Lerner M; Harada M; Lovén J; Castro J; Davis Z; Oscier D; Henriksson M; Sangfelt O; Grandér D; Corcoran MM
    Exp Cell Res; 2009 Oct; 315(17):2941-52. PubMed ID: 19591824
    [TBL] [Abstract] [Full Text] [Related]  

  • 20. Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma.
    Horikawa Y; Wood CG; Yang H; Zhao H; Ye Y; Gu J; Lin J; Habuchi T; Wu X
    Clin Cancer Res; 2008 Dec; 14(23):7956-62. PubMed ID: 19047128
    [TBL] [Abstract] [Full Text] [Related]  


    of 1.