BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

Terms: = Leukemia AND CRTC1, Q6UUV9, 23373, ENSG00000105662, KIAA0616, TORC1, MECT1, WAMTP1, FLJ14027
25 results:

  • 1. A phase 2 and pharmacological study of sapanisertib in patients with relapsed and/or refractory acute lymphoblastic leukemia.
    Al-Kali A; Aldoss I; Atherton PJ; Strand CA; Shah B; Webster J; Bhatnagar B; Flatten KS; Peterson KL; Schneider PA; Buhrow SA; Kong J; Reid JM; Adjei AA; Kaufmann SH
    Cancer Med; 2023 Dec; 12(23):21229-21239. PubMed ID: 37960985
    [TBL] [Abstract] [Full Text] [Related]  

  • 2. Systemic Lupus Erythematosus Patients with DNASE1L3·Deficiency Have a Distinctive and Specific Genic Circular DNA Profile in Plasma.
    Gerovska D; Araúzo-Bravo MJ
    Cells; 2023 Mar; 12(7):. PubMed ID: 37048133
    [TBL] [Abstract] [Full Text] [Related]  

  • 3. Is There a Role for Dual PI3K/mTOR Inhibitors for Patients Affected with Lymphoma?
    Tarantelli C; Lupia A; Stathis A; Bertoni F
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32033478
    [TBL] [Abstract] [Full Text] [Related]  

  • 4. Copy number alterations determined by single nucleotide polymorphism array testing in the clinical laboratory are indicative of gene fusions in pediatric cancer patients.
    Busse TM; Roth JJ; Wilmoth D; Wainwright L; Tooke L; Biegel JA
    Genes Chromosomes Cancer; 2017 Oct; 56(10):730-749. PubMed ID: 28597942
    [TBL] [Abstract] [Full Text] [Related]  

  • 5. Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia.
    Tasian SK; Teachey DT; Li Y; Shen F; Harvey RC; Chen IM; Ryan T; Vincent TL; Willman CL; Perl AE; Hunger SP; Loh ML; Carroll M; Grupp SA
    Blood; 2017 Jan; 129(2):177-187. PubMed ID: 27777238
    [TBL] [Abstract] [Full Text] [Related]  

  • 6. miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia.
    Jiang X; Hu C; Arnovitz S; Bugno J; Yu M; Zuo Z; Chen P; Huang H; Ulrich B; Gurbuxani S; Weng H; Strong J; Wang Y; Li Y; Salat J; Li S; Elkahloun AG; Yang Y; Neilly MB; Larson RA; Le Beau MM; Herold T; Bohlander SK; Liu PP; Zhang J; Li Z; He C; Jin J; Hong S; Chen J
    Nat Commun; 2016 Apr; 7():11452. PubMed ID: 27116251
    [TBL] [Abstract] [Full Text] [Related]  

  • 7. Treatment of relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma with everolimus (RAD001) and alemtuzumab: a Phase I/II study.
    Zent CS; Bowen DA; Conte MJ; LaPlant BR; Call TG
    Leuk Lymphoma; 2016 Jul; 57(7):1585-91. PubMed ID: 26699397
    [TBL] [Abstract] [Full Text] [Related]  

  • 8. Co-administration of the mtorc1/TORC2 inhibitor INK128 and the Bcl-2/Bcl-xL antagonist ABT-737 kills human myeloid leukemia cells through Mcl-1 down-regulation and AKT inactivation.
    Rahmani M; Aust MM; Hawkins E; Parker RE; Ross M; Kmieciak M; Reshko LB; Rizzo KA; Dumur CI; Ferreira-Gonzalez A; Grant S
    Haematologica; 2015 Dec; 100(12):1553-63. PubMed ID: 26452980
    [TBL] [Abstract] [Full Text] [Related]  

  • 9. SIRT1 Suppresses Human T-Cell leukemia Virus Type 1 Transcription.
    Tang HM; Gao WW; Chan CP; Cheng Y; Deng JJ; Yuen KS; Iha H; Jin DY
    J Virol; 2015 Aug; 89(16):8623-31. PubMed ID: 26063426
    [TBL] [Abstract] [Full Text] [Related]  

  • 10. Assessment of ABT-263 activity across a cancer cell line collection leads to a potent combination therapy for small-cell lung cancer.
    Faber AC; Farago AF; Costa C; Dastur A; Gomez-Caraballo M; Robbins R; Wagner BL; Rideout WM; Jakubik CT; Ham J; Edelman EJ; Ebi H; Yeo AT; Hata AN; Song Y; Patel NU; March RJ; Tam AT; Milano RJ; Boisvert JL; Hicks MA; Elmiligy S; Malstrom SE; Rivera MN; Harada H; Windle BE; Ramaswamy S; Benes CH; Jacks T; Engelman JA
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):E1288-96. PubMed ID: 25737542
    [TBL] [Abstract] [Full Text] [Related]  

  • 11. mTOR inhibition specifically sensitizes colorectal cancers with KRAS or BRAF mutations to BCL-2/BCL-XL inhibition by suppressing MCL-1.
    Faber AC; Coffee EM; Costa C; Dastur A; Ebi H; Hata AN; Yeo AT; Edelman EJ; Song Y; Tam AT; Boisvert JL; Milano RJ; Roper J; Kodack DP; Jain RK; Corcoran RB; Rivera MN; Ramaswamy S; Hung KE; Benes CH; Engelman JA
    Cancer Discov; 2014 Jan; 4(1):42-52. PubMed ID: 24163374
    [TBL] [Abstract] [Full Text] [Related]  

  • 12. Group I p21-activated kinases facilitate Tax-mediated transcriptional activation of the human T-cell leukemia virus type 1 long terminal repeats.
    Chan CP; Siu YT; Kok KH; Ching YP; Tang HM; Jin DY
    Retrovirology; 2013 Apr; 10():47. PubMed ID: 23622267
    [TBL] [Abstract] [Full Text] [Related]  

  • 13. Clinicopathological significance of MAML2 gene split in mucoepidermoid carcinoma.
    Noda H; Okumura Y; Nakayama T; Miyabe S; Fujiyoshi Y; Hattori H; Shimozato K; Inagaki H
    Cancer Sci; 2013 Jan; 104(1):85-92. PubMed ID: 23035786
    [TBL] [Abstract] [Full Text] [Related]  

  • 14. Optimal induction of myeloma cell death requires dual blockade of phosphoinositide 3-kinase and mTOR signalling and is determined by translocation subtype.
    Stengel C; Cheung CW; Quinn J; Yong K; Khwaja A
    Leukemia; 2012 Aug; 26(8):1761-70. PubMed ID: 22415553
    [TBL] [Abstract] [Full Text] [Related]  

  • 15. Targeting mTOR for the treatment of AML. New agents and new directions.
    Altman JK; Sassano A; Platanias LC
    Oncotarget; 2011 Jun; 2(6):510-7. PubMed ID: 21680954
    [TBL] [Abstract] [Full Text] [Related]  

  • 16. Understanding PLZF: two transcriptional targets, REDD1 and smooth muscle α-actin, define new questions in growth control, senescence, self-renewal and tumor suppression.
    Kolesnichenko M; Vogt PK
    Cell Cycle; 2011 Mar; 10(5):771-5. PubMed ID: 21311223
    [TBL] [Abstract] [Full Text] [Related]  

  • 17. Target of rapamycin signaling in leukemia and lymphoma.
    Vu C; Fruman DA
    Clin Cancer Res; 2010 Nov; 16(22):5374-80. PubMed ID: 20826559
    [TBL] [Abstract] [Full Text] [Related]  

  • 18. A functional link between polo-like kinase 1 and the mammalian target-of-rapamycin pathway?
    Renner AG; Créancier L; Dos Santos C; Fialin C; Recher C; Bailly C; Kruczynski A; Payrastre B; Manenti S
    Cell Cycle; 2010 May; 9(9):1690-6. PubMed ID: 20404504
    [TBL] [Abstract] [Full Text] [Related]  

  • 19. Effective and selective targeting of leukemia cells using a torc1/2 kinase inhibitor.
    Janes MR; Limon JJ; So L; Chen J; Lim RJ; Chavez MA; Vu C; Lilly MB; Mallya S; Ong ST; Konopleva M; Martin MB; Ren P; Liu Y; Rommel C; Fruman DA
    Nat Med; 2010 Feb; 16(2):205-13. PubMed ID: 20072130
    [TBL] [Abstract] [Full Text] [Related]  

  • 20. Involvement of TORC2, a CREB co-activator, in the in vivo-specific transcriptional control of HTLV-1.
    Jiang S; Inada T; Tanaka M; Furuta RA; Shingu K; Fujisawa J
    Retrovirology; 2009 Aug; 6():73. PubMed ID: 19664292
    [TBL] [Abstract] [Full Text] [Related]  


    [Next]

    of 2.