BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

Terms: = Leukemia AND MYH11, ENSG00000133392, 4629
385 results:

  • 1. Application of droplet digital PCR in minimal residual disease monitoring of rare fusion transcripts and mutations in haematological malignancies.
    Ip BBK; Wong ATC; Law JHY; Au CH; Ma SY; Chim JCS; Liang RHS; Leung AYH; Wan TSK; Ma ESK
    Sci Rep; 2024 Mar; 14(1):6400. PubMed ID: 38493200
    [TBL] [Abstract] [Full Text] [Related]  

  • 2. Clinical implications of additional chromosomal abnormalities in adult acute myeloid leukemia with inv (16)/t(16;16)/CBFB::myh11.
    Gao J; Santana-Santos L; Fu L; Alvey E; Chen Q; Wolniak K; Xia Z; Aqil B; Behdad A; Ji P; Sukhanova M; Abaza Y; Altman JK; Chen YH; Lu X
    Eur J Haematol; 2024 Jun; 112(6):964-974. PubMed ID: 38388794
    [TBL] [Abstract] [Full Text] [Related]  

  • 3. [Acute myeloid leukemia with type I CBFB::myh11 fusion gene not detected by screening test for leukemia-related chimeric genes].
    Utsumi S; Shima T; Kubara C; Semba Y; Hayashi M; Takigawa K; Yoshino T; Minami M; Matsuo Y; Kuriyama T; Akashi K; Maeda T; Taniguchi S; Eto T
    Rinsho Ketsueki; 2023; 64(12):1503-1507. PubMed ID: 38220149
    [TBL] [Abstract] [Full Text] [Related]  

  • 4. Therapy-related acute myeloid leukemia with
    Yang X; Liu Q; Zhang R; Yang X; Wang L; Zhang Z; Li Y; Lin L
    Indian J Pathol Microbiol; 2023; 66(4):865-867. PubMed ID: 38084551
    [TBL] [Abstract] [Full Text] [Related]  

  • 5. Proteogenomic analysis reveals cytoplasmic sequestration of RUNX1 by the acute myeloid leukemia-initiating CBFB::myh11 oncofusion protein.
    Day RB; Hickman JA; Xu Z; Katerndahl CD; Ferraro F; Ramakrishnan SM; Erdmann-Gilmore P; Sprung RW; Mi Y; Townsend RR; Miller CA; Ley TJ
    J Clin Invest; 2023 Dec; 134(4):. PubMed ID: 38061017
    [TBL] [Abstract] [Full Text] [Related]  

  • 6. KIT exon 17 mutations are predictive of inferior outcome in pediatric acute myeloid leukemia with RUNX1::RUNX1T1.
    Srinivasan S; Dhamne C; Patkar N; Chatterjee G; Moulik NR; Chichra A; Pallath A; Tembhare P; Shetty D; Subramanian PG; Narula G; Banavali S
    Pediatr Blood Cancer; 2024 Feb; 71(2):e30791. PubMed ID: 38014874
    [TBL] [Abstract] [Full Text] [Related]  

  • 7. [Clinical features and prognosis of core binding factor acute myeloid leukemia children in South China: a multicenter study].
    Guo BY; Wang Y; Li J; Li CF; Feng XQ; Zheng MC; Liu SX; Yang LH; Jiang H; Xu HG; He XL; Wen H
    Zhonghua Er Ke Za Zhi; 2023 Oct; 61(10):881-888. PubMed ID: 37803854
    [No Abstract]    [Full Text] [Related]  

  • 8. Core-binding factor abnormalities involving chromosome 16 in acute myeloid leukaemia: prognostic and therapeutic implications.
    Panigrahi C; Tikare N; Das PK; Padhi S
    BMJ Case Rep; 2023 Aug; 16(8):. PubMed ID: 37591621
    [TBL] [Abstract] [Full Text] [Related]  

  • 9. Comparison of efficacy between homoharringtonine, aclarubicin, cytarabine (HAA) and idarubicin, cytarabine (IA) regimens as induction therapy in patients with de novo core binding factor acute myeloid leukemia.
    Duan W; Yang S; Zhao T; Hu L; Qin Y; Jia J; Wang J; Lu S; Jiang H; Zhang X; Xu L; Wang Y; Lai Y; Shi H; Huang X; Jiang Q
    Ann Hematol; 2023 Oct; 102(10):2695-2705. PubMed ID: 37572135
    [TBL] [Abstract] [Full Text] [Related]  

  • 10. Characterization of leukemia progression in the Cbfb-myh11 knockin mice by single cell RNA sequencing.
    Diemer JL; Yu K; Kelly M; Zhen T; Anderson S; Lopez G; Liu P
    Leukemia; 2023 Jul; 37(7):1549-1553. PubMed ID: 37225965
    [TBL] [Abstract] [Full Text] [Related]  

  • 11. CAG (cytarabine, aclarubicin and granulocyte colony-stimulating factor) regimen for core binding factor acute myeloid leukaemia with measurable residual disease.
    Shen YJ; Zhang Y; Chang J; Wang HF; Ye XN; Zhu L; Jin J; Zhu HH
    Ann Hematol; 2023 Jul; 102(7):1731-1738. PubMed ID: 37145324
    [TBL] [Abstract] [Full Text] [Related]  

  • 12. TP53 and RB1 alterations characterize poor prognostic subgroups in pediatric acute myeloid leukemia.
    Hara Y; Shiba N; Yoshida K; Yamato G; Kaburagi T; Shiraishi Y; Ohki K; Shiozawa Y; Kawamura M; Kawasaki H; Sotomatsu M; Takizawa T; Matsuo H; Shimada A; Kiyokawa N; Tomizawa D; Taga T; Ito E; Horibe K; Miyano S; Adachi S; Taki T; Ogawa S; Hayashi Y
    Genes Chromosomes Cancer; 2023 Jul; 62(7):412-422. PubMed ID: 37102302
    [TBL] [Abstract] [Full Text] [Related]  

  • 13. Etiology of oncogenic fusions in 5,190 childhood cancers and its clinical and therapeutic implication.
    Liu Y; Klein J; Bajpai R; Dong L; Tran Q; Kolekar P; Smith JL; Ries RE; Huang BJ; Wang YC; Alonzo TA; Tian L; Mulder HL; Shaw TI; Ma J; Walsh MP; Song G; Westover T; Autry RJ; Gout AM; Wheeler DA; Wan S; Wu G; Yang JJ; Evans WE; Loh M; Easton J; Zhang J; Klco JM; Meshinchi S; Brown PA; Pruett-Miller SM; Ma X
    Nat Commun; 2023 Apr; 14(1):1739. PubMed ID: 37019972
    [TBL] [Abstract] [Full Text] [Related]  

  • 14. Assessment of acute myeloid leukemia molecular measurable residual disease testing in an interlaboratory study.
    Scott S; Dillon R; Thiede C; Sadiq S; Cartwright A; Clouston HJ; Travis D; Mokretar K; Potter N; Chantry A; Whitby L
    Blood Adv; 2023 Jul; 7(14):3686-3694. PubMed ID: 36939402
    [TBL] [Abstract] [Full Text] [Related]  

  • 15. RNA sequencing of myeloid sarcoma, shed light on myeloid sarcoma stratification.
    Yang Y; Shu Y; Tang Y; Zhao S; Jia Y; Ji J; Ma H; Lin T; Zheng K; Xu H; Wu Y
    Cancer Med; 2023 Apr; 12(8):9156-9166. PubMed ID: 36916780
    [TBL] [Abstract] [Full Text] [Related]  

  • 16. Comprehensive molecular understanding of pediatric acute myeloid leukemia.
    Shiba N
    Int J Hematol; 2023 Feb; 117(2):173-181. PubMed ID: 36653696
    [TBL] [Abstract] [Full Text] [Related]  

  • 17. [Molecular Genetic Characteristics of Acute Myeloid leukemia Patients with
    Jiang Y; Chao HY; Lu XZ; Wu P; Sun XC
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2022 Dec; 30(6):1661-1667. PubMed ID: 36476886
    [TBL] [Abstract] [Full Text] [Related]  

  • 18. Transcriptome-based molecular subtypes and differentiation hierarchies improve the classification framework of acute myeloid leukemia.
    Cheng WY; Li JF; Zhu YM; Lin XJ; Wen LJ; Zhang F; Zhang YL; Zhao M; Fang H; Wang SY; Lin XJ; Qiao N; Yin W; Zhang JN; Dai YT; Jiang L; Sun XJ; Xu Y; Zhang TT; Chen SN; Zhu HH; Chen Z; Jin J; Wu DP; Shen Y; Chen SJ
    Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2211429119. PubMed ID: 36442087
    [TBL] [Abstract] [Full Text] [Related]  

  • 19. Blast phase of chronic myeloid leukemia with concurrent BCR::ABL1 and SET::NUP214: A report of two cases.
    Chen Y; Wang Q; Cen J; Xu C; Tao TT; Xie J; Shen W; Gong Y; Pan J; Yao L
    Mol Carcinog; 2023 Feb; 62(2):117-121. PubMed ID: 36321418
    [TBL] [Abstract] [Full Text] [Related]  

  • 20. Explainable artificial intelligence for precision medicine in acute myeloid leukemia.
    Gimeno M; San José-Enériz E; Villar S; Agirre X; Prosper F; Rubio A; Carazo F
    Front Immunol; 2022; 13():977358. PubMed ID: 36248800
    [TBL] [Abstract] [Full Text] [Related]  


    [Next]

    of 20.