BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

Terms: = Prostate cancer AND MAPK1, MAPK2, 5594, ENSG00000100030, P28482, ERK2, p40, PRKM1, p38, p41, ERT1, p41mapk, PRKM2, P42MAPK, ERK AND Prognosis
54 results:

  • 1. Tyrosine phosphatase
    Chen X; Keller SJ; Hafner P; Alrawashdeh AY; Avery TY; Norona J; Zhou J; Ruess DA
    Front Immunol; 2024; 15():1340726. PubMed ID: 38504984
    [TBL] [Abstract] [Full Text] [Related]  

  • 2. A novel isoxazole compound CM2-II-173 inhibits the invasive phenotype of triple-negative breast cancer cells.
    Kim ES; Kim S; Moon A
    Oncol Res; 2023; 31(6):867-875. PubMed ID: 37744269
    [TBL] [Abstract] [Full Text] [Related]  

  • 3. Protein kinase D activity is a risk biomarker in prostate cancer that drives cell invasion by a Snail/erk dependent mechanism.
    Cilleros-Rodríguez D; Toledo-Lobo MV; Martínez-Martínez D; Baquero P; Angulo JC; Chiloeches A; Iglesias T; Lasa M
    Biochim Biophys Acta Mol Basis Dis; 2024 Jan; 1870(1):166851. PubMed ID: 37611675
    [TBL] [Abstract] [Full Text] [Related]  

  • 4. SALL4 correlates with proliferation, metastasis, and poor prognosis in prostate cancer by affecting MAPK pathway.
    Zhou J; Peng S; Fan H; Li J; Li Z; Wang G; Zeng L; Guo Z; Lai Y; Huang H
    Cancer Med; 2023 Jun; 12(12):13471-13485. PubMed ID: 37119046
    [TBL] [Abstract] [Full Text] [Related]  

  • 5. SCAND1 Reverses Epithelial-to-Mesenchymal Transition (EMT) and Suppresses prostate cancer Growth and Migration.
    Eguchi T; Csizmadia E; Kawai H; Sheta M; Yoshida K; Prince TL; Wegiel B; Calderwood SK
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552758
    [TBL] [Abstract] [Full Text] [Related]  

  • 6. MAPK8IP2 is a potential prognostic biomarker and promote tumor progression in prostate cancer.
    Zeng Z; He W; Jiang Y; Jiang H; Cheng X; Deng W; Zhou X; Zhang C; Wang G
    BMC Cancer; 2022 Nov; 22(1):1162. PubMed ID: 36357836
    [TBL] [Abstract] [Full Text] [Related]  

  • 7. BDNF and its signaling in cancer.
    Malekan M; Nezamabadi SS; Samami E; Mohebalizadeh M; Saghazadeh A; Rezaei N
    J Cancer Res Clin Oncol; 2023 Jun; 149(6):2621-2636. PubMed ID: 36173463
    [TBL] [Abstract] [Full Text] [Related]  

  • 8. Metastatic SMARCB1 Deficient Skin Carcinoma With Neuroendocrine Differentiation in the Parotid Glands Clinically Mimicking Primary Salivary Gland Malignancy: Unusual Case With Diagnostic Pitfalls.
    Fang F; Zhang QI; Pinto-Cuberos JM; Lai J
    Anticancer Res; 2022 Aug; 42(8):3971-3974. PubMed ID: 35896245
    [TBL] [Abstract] [Full Text] [Related]  

  • 9. STEAP3 promotes cancer cell proliferation by facilitating nuclear trafficking of EGFR to enhance RAC1-erk-STAT3 signaling in hepatocellular carcinoma.
    Wang LL; Luo J; He ZH; Liu YQ; Li HG; Xie D; Cai MY
    Cell Death Dis; 2021 Nov; 12(11):1052. PubMed ID: 34741044
    [TBL] [Abstract] [Full Text] [Related]  

  • 10. Dysfunction of miR-802 in tumors.
    Gao T; Zou M; Shen T; Duan S
    J Clin Lab Anal; 2021 Nov; 35(11):e23989. PubMed ID: 34558723
    [TBL] [Abstract] [Full Text] [Related]  

  • 11. REX-1 Represses RASSF1a and Activates the MEK/erk Pathway to Promote Tumorigenesis in prostate cancer.
    Liu W; Xie A; Tu C; Liu W
    Mol Cancer Res; 2021 Oct; 19(10):1666-1675. PubMed ID: 34183450
    [TBL] [Abstract] [Full Text] [Related]  

  • 12. Androgen receptor expression in breast cancer: Implications on prognosis and treatment, a brief review.
    Jahan N; Jones C; Rahman RL
    Mol Cell Endocrinol; 2021 Jul; 531():111324. PubMed ID: 34000352
    [TBL] [Abstract] [Full Text] [Related]  

  • 13. CDCA5 promotes the progression of prostate cancer by affecting the erk signalling pathway.
    Ji J; Shen T; Li Y; Liu Y; Shang Z; Niu Y
    Oncol Rep; 2021 Mar; 45(3):921-932. PubMed ID: 33650660
    [TBL] [Abstract] [Full Text] [Related]  

  • 14. The footprint of kynurenine pathway in every cancer: a new target for chemotherapy.
    Ala M
    Eur J Pharmacol; 2021 Apr; 896():173921. PubMed ID: 33529725
    [TBL] [Abstract] [Full Text] [Related]  

  • 15. Down regulation of U2AF1 promotes ARV7 splicing and prostate cancer progression.
    Cao H; Wang D; Gao R; Chen L; Feng Y
    Biochem Biophys Res Commun; 2021 Feb; 541():56-62. PubMed ID: 33477033
    [TBL] [Abstract] [Full Text] [Related]  

  • 16. miR-199b-5p-DDR1-erk signalling axis suppresses prostate cancer metastasis via inhibiting epithelial-mesenchymal transition.
    Zhao Z; Zhao S; Luo L; Xiang Q; Zhu Z; Wang J; Liu Y; Luo J
    Br J Cancer; 2021 Mar; 124(5):982-994. PubMed ID: 33239676
    [TBL] [Abstract] [Full Text] [Related]  

  • 17. Clinicopathological significance of intelectin-1 in colorectal cancer: Intelectin-1 participates in tumor suppression and favorable progress.
    Katsuya N; Sentani K; Sekino Y; Yamamoto Y; Kobayashi G; Babasaki T; Oue N; Amatya VJ; Takeshima Y; Yasui W
    Pathol Int; 2020 Dec; 70(12):943-952. PubMed ID: 33002285
    [TBL] [Abstract] [Full Text] [Related]  

  • 18. Development of an autophagy-related gene expression signature for prognosis prediction in prostate cancer patients.
    Hu D; Jiang L; Luo S; Zhao X; Hu H; Zhao G; Tang W
    J Transl Med; 2020 Apr; 18(1):160. PubMed ID: 32264916
    [TBL] [Abstract] [Full Text] [Related]  

  • 19. Integrative Exome Sequencing Analysis in Castration-Resistant prostate cancer in Chinese Population.
    Hao L; Li H; Zhang S; Yang Y; Xu Z; Zhang Y; Liu Z
    Curr Pharm Biotechnol; 2020; 21(2):140-148. PubMed ID: 31580249
    [TBL] [Abstract] [Full Text] [Related]  

  • 20. SET domain containing protein 5 (SETD5) enhances tumor cell invasion and is associated with a poor prognosis in non-small cell lung cancer patients.
    Yu H; Sun J; Zhao C; Wang H; Liu Y; Xiong J; Chang J; Wang M; Wang W; Ye D; Zhou H; Yu T
    BMC Cancer; 2019 Jul; 19(1):736. PubMed ID: 31345185
    [TBL] [Abstract] [Full Text] [Related]  


    [Next]

    of 3.