BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

Terms: = Prostate cancer AND SMAD2, MADH2, 4087, ENSG00000175387, MGC34440, MGC22139, hMAD-2, MADR2, JV18-1, hSMAD2, JV18 AND Treatment
31 results:

  • 1. GOLM1 Promotes Epithelial-Mesenchymal Transition by Activating TGFβ1/smad2 Signaling in prostate cancer.
    Qin X; Liu L; Li Y; Luo H; Chen H; Weng X
    Technol Cancer Res Treat; 2023; 22():15330338231153618. PubMed ID: 36999196
    [No Abstract]    [Full Text] [Related]  

  • 2. Sasanquasaponin inhibited epithelial to mesenchymal transition in prostate cancer by regulating the PI3K/Akt/mTOR and Smad pathways.
    Li W; Mao Y; Hua B; Gu X; Lu C; Xu B; Pan W
    Pharm Biol; 2022 Dec; 60(1):1865-1875. PubMed ID: 36205544
    [TBL] [Abstract] [Full Text] [Related]  

  • 3. Activation of TGF-β - smad2 signaling by IL-6 drives neuroendocrine differentiation of prostate cancer through p38MAPK.
    Natani S; Sruthi KK; Asha SM; Khilar P; Lakshmi PSV; Ummanni R
    Cell Signal; 2022 Mar; 91():110240. PubMed ID: 34986386
    [TBL] [Abstract] [Full Text] [Related]  

  • 4. Long non-‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer.
    Weng W; Liu C; Li G; Ruan Q; Li H; Lin N; Chen G
    Mol Med Rep; 2021 Dec; 24(6):. PubMed ID: 34643247
    [TBL] [Abstract] [Full Text] [Related]  

  • 5. Kartogenin Inhibits prostate cancer Cell Growth Through smad2 Activation and Decreases Androgen Receptor Nuclear Localization.
    Takai M; Kawakami K; Fujita Y; Kato T; Kato D; Iinuma K; Koie T; Ito M; Mizutani K
    Anticancer Res; 2021 Oct; 41(10):4753-4759. PubMed ID: 34593424
    [TBL] [Abstract] [Full Text] [Related]  

  • 6. Role of ZEB Family Members in Proliferation, Metastasis, and Chemoresistance of prostate cancer Cells: Revealing Signaling Networks.
    Soleymani L; Zarrabi A; Hashemi F; Hashemi F; Zabolian A; Banihashemi SM; Moghadam SS; Hushmandi K; Samarghandian S; Ashrafizadeh M; Khan H
    Curr Cancer Drug Targets; 2021; 21(9):749-767. PubMed ID: 34077345
    [TBL] [Abstract] [Full Text] [Related]  

  • 7. Verbascoside inhibits the epithelial-mesenchymal transition of prostate cancer cells through high-mobility group box 1/receptor for advanced glycation end-products/TGF-β pathway.
    Wu CH; Chen CH; Hsieh PF; Lee YH; Kuo WW; Wu RC; Hung CH; Yang YL; Lin VC
    Environ Toxicol; 2021 Jun; 36(6):1080-1089. PubMed ID: 33522686
    [TBL] [Abstract] [Full Text] [Related]  

  • 8. KDM6B is an androgen regulated gene and plays oncogenic roles by demethylating H3K27me3 at cyclin D1 promoter in prostate cancer.
    Cao Z; Shi X; Tian F; Fang Y; Wu JB; Mrdenovic S; Nian X; Ji J; Xu H; Kong C; Xu Y; Chen X; Huang Y; Wei X; Yu Y; Yang B; Chung LWK; Wang F
    Cell Death Dis; 2021 Jan; 12(1):2. PubMed ID: 33414463
    [TBL] [Abstract] [Full Text] [Related]  

  • 9. prostate cancer in Men With Treated Advanced Heart Failure: Should we Keep Screening?
    Lee HH; Shaw NM; Mohammed S; Kowalczyk KJ; Stamatakis L; Krasnow RE
    Urology; 2020 Feb; 136():46-50. PubMed ID: 31786304
    [TBL] [Abstract] [Full Text] [Related]  

  • 10. Participation of the smad2/3 signalling pathway in the down regulation of megalin/LRP2 by transforming growth factor beta (TGF-ß1).
    Cabezas F; Farfán P; Marzolo MP
    PLoS One; 2019; 14(5):e0213127. PubMed ID: 31120873
    [TBL] [Abstract] [Full Text] [Related]  

  • 11. Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression.
    Song B; Park SH; Zhao JC; Fong KW; Li S; Lee Y; Yang YA; Sridhar S; Lu X; Abdulkadir SA; Vessella RL; Morrissey C; Kuzel TM; Catalona W; Yang X; Yu J
    J Clin Invest; 2019 Feb; 129(2):569-582. PubMed ID: 30511964
    [TBL] [Abstract] [Full Text] [Related]  

  • 12. Three-year interim results of overall and progression-free survival in a cohort of patients with prostate cancer (GESCAP group).
    Cózar JM; Miñana B; Gómez-Veiga F; Rodríguez-Antolín A;
    Actas Urol Esp (Engl Ed); 2019; 43(1):4-11. PubMed ID: 29891440
    [TBL] [Abstract] [Full Text] [Related]  

  • 13. Identification of gene expression models for laryngeal squamous cell carcinoma using co-expression network analysis.
    Yang CW; Wang SF; Yang XL; Wang L; Niu L; Liu JX
    Medicine (Baltimore); 2018 Feb; 97(7):e9738. PubMed ID: 29443735
    [TBL] [Abstract] [Full Text] [Related]  

  • 14. Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/smad2/3 signaling pathway.
    Kou B; Liu W; Zhao W; Duan P; Yang Y; Yi Q; Guo F; Li J; Zhou J; Kou Q
    Oncol Rep; 2017 Dec; 38(6):3592-3598. PubMed ID: 29039572
    [TBL] [Abstract] [Full Text] [Related]  

  • 15. Transforming growth factor-β promotes aggressiveness and invasion of clear cell renal cell carcinoma.
    Sitaram RT; Mallikarjuna P; Landström M; Ljungberg B
    Oncotarget; 2016 Jun; 7(24):35917-35931. PubMed ID: 27166254
    [TBL] [Abstract] [Full Text] [Related]  

  • 16. Transforming growth factor-β signaling induced during prostate cancer cell death and neuroendocrine differentiation is mediated by bone marrow stromal cells.
    Miles FL; Kurtoglu S; Ahmer C; Soori M; Favate JS; Sikes RA
    Prostate; 2015 Nov; 75(15):1802-13. PubMed ID: 26392321
    [TBL] [Abstract] [Full Text] [Related]  

  • 17. Cryoablation induced the change of TGF-β pathway in CWR-22RV prostate cancer cell line.
    Nailing T; Zhi G; Xueling Y
    Cryobiology; 2015 Aug; 71(1):130-4. PubMed ID: 25952505
    [TBL] [Abstract] [Full Text] [Related]  

  • 18. Inhibition of transforming growth factor beta/SMAD signal by MiR-155 is involved in arsenic trioxide-induced anti-angiogenesis in prostate cancer.
    Ji H; Li Y; Jiang F; Wang X; Zhang J; Shen J; Yang X
    Cancer Sci; 2014 Dec; 105(12):1541-9. PubMed ID: 25283513
    [TBL] [Abstract] [Full Text] [Related]  

  • 19. prostate apoptosis response-4 mediates TGF-β-induced epithelial-to-mesenchymal transition.
    Chaudhry P; Fabi F; Singh M; Parent S; Leblanc V; Asselin E
    Cell Death Dis; 2014 Feb; 5(2):e1044. PubMed ID: 24503536
    [TBL] [Abstract] [Full Text] [Related]  

  • 20. Reduction of prostate cancer incidence by naftopidil, an α1 -adrenoceptor antagonist and transforming growth factor-β signaling inhibitor.
    Yamada D; Nishimatsu H; Kumano S; Hirano Y; Suzuki M; Fujimura T; Fukuhara H; Enomoto Y; Kume H; Homma Y
    Int J Urol; 2013 Dec; 20(12):1220-7. PubMed ID: 23600973
    [TBL] [Abstract] [Full Text] [Related]  


    [Next]

    of 2.