BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

Terms: = Prostate cancer AND TOP2A, TOP2, TP2A AND Prognosis
13 results:

  • 1. A Machine Learning Method for Predicting Biomarkers Associated with prostate cancer.
    Tong Y; Tan Z; Wang P; Gao X
    Front Biosci (Landmark Ed); 2023 Dec; 28(12):333. PubMed ID: 38179769
    [TBL] [Abstract] [Full Text] [Related]  

  • 2. IQGAP3 is relevant to prostate cancer: A detailed presentation of potential pathomechanisms.
    Mei W; Dong Y; Gu Y; Kapoor A; Lin X; Su Y; Vega Neira S; Tang D
    J Adv Res; 2023 Dec; 54():195-210. PubMed ID: 36681115
    [TBL] [Abstract] [Full Text] [Related]  

  • 3. A machine learning framework develops a DNA replication stress model for predicting clinical outcomes and therapeutic vulnerability in primary prostate cancer.
    Huang RH; Hong YK; Du H; Ke WQ; Lin BB; Li YL
    J Transl Med; 2023 Jan; 21(1):20. PubMed ID: 36635710
    [TBL] [Abstract] [Full Text] [Related]  

  • 4. Identification of the Key Genes Involved in the Tumorigenesis and prognosis of prostate cancer.
    Wang W; Wu Q; Mohyeddin A; Liu Y; Liu Z; Ge J; Zhang B; Shi G; Wang W; Wu D; Wang F
    Comput Math Methods Med; 2022; 2022():5500416. PubMed ID: 36245843
    [TBL] [Abstract] [Full Text] [Related]  

  • 5. Identification of novel biomarkers in prostate cancer diagnosis and prognosis.
    Li W; Xu W; Sun K; Wang F; Wong TW; Kong AN
    J Biochem Mol Toxicol; 2022 Sep; 36(9):e23137. PubMed ID: 35686336
    [TBL] [Abstract] [Full Text] [Related]  

  • 6. Environmental Phenol and Paraben Exposure Risks and Their Potential Influence on the Gene Expression Involved in the prognosis of prostate cancer.
    Alwadi D; Felty Q; Roy D; Yoo C; Deoraj A
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409038
    [TBL] [Abstract] [Full Text] [Related]  

  • 7. Identification of UBE2C as hub gene in driving prostate cancer by integrated bioinformatics analysis.
    Wang Y; Wang J; Tang Q; Ren G
    PLoS One; 2021; 16(2):e0247827. PubMed ID: 33630978
    [TBL] [Abstract] [Full Text] [Related]  

  • 8. Etoposide and topoisomerase II inhibition for aggressive prostate cancer: Data from a translational study.
    Cattrini C; Capaia M; Boccardo F; Barboro P
    Cancer Treat Res Commun; 2020; 25():100221. PubMed ID: 33091733
    [TBL] [Abstract] [Full Text] [Related]  

  • 9. Identification a novel set of 6 differential expressed genes in prostate cancer that can potentially predict biochemical recurrence after curative surgery.
    Li F; Ji JP; Xu Y; Liu RL
    Clin Transl Oncol; 2019 Aug; 21(8):1067-1075. PubMed ID: 30637711
    [TBL] [Abstract] [Full Text] [Related]  

  • 10. Downregulation of miR‑224‑5p in prostate cancer and its relevant molecular mechanism via TCGA, GEO database and in silico analyses.
    Gan BL; Zhang LJ; Gao L; Ma FC; He RQ; Chen G; Ma J; Zhong JC; Hu XH
    Oncol Rep; 2018 Dec; 40(6):3171-3188. PubMed ID: 30542718
    [TBL] [Abstract] [Full Text] [Related]  

  • 11. top2ahigh is the phenotype of recurrence and metastasis whereas top2aneg cells represent cancer stem cells in prostate cancer.
    Li X; Liu Y; Chen W; Fang Y; Xu H; Zhu HH; Chu M; Li W; Zhuang G; Gao WQ
    Oncotarget; 2014 Oct; 5(19):9498-513. PubMed ID: 25237769
    [TBL] [Abstract] [Full Text] [Related]  

  • 12. The maternal embryonic leucine zipper kinase (MELK) is upregulated in high-grade prostate cancer.
    Kuner R; Fälth M; Pressinotti NC; Brase JC; Puig SB; Metzger J; Gade S; Schäfer G; Bartsch G; Steiner E; Klocker H; Sültmann H
    J Mol Med (Berl); 2013 Feb; 91(2):237-48. PubMed ID: 22945237
    [TBL] [Abstract] [Full Text] [Related]  

  • 13. Identification of prognostic biomarkers for prostate cancer.
    Kosari F; Munz JM; Savci-Heijink CD; Spiro C; Klee EW; Kube DM; Tillmans L; Slezak J; Karnes RJ; Cheville JC; Vasmatzis G
    Clin Cancer Res; 2008 Mar; 14(6):1734-43. PubMed ID: 18347174
    [TBL] [Abstract] [Full Text] [Related]  


    of 1.