BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

Terms: = Prostate cancer AND TPR, P12270, 7175
32 results:

  • 1. PSMA PET/MR is a New Imaging Option for Identifying Glioma Recurrence and Predicting Prognosis.
    Xiong M; Chen Z; Zhou C; Yang X; Hu W; Jiang Y; Zheng R; Fan W; Mou Y; Lin X
    Recent Pat Anticancer Drug Discov; 2024; 19(3):383-395. PubMed ID: 38214322
    [TBL] [Abstract] [Full Text] [Related]  

  • 2. Comparison of Multiple Segmentation Methods for Volumetric Delineation of Primary prostate cancer with prostate-Specific Membrane Antigen-Targeted
    Wang F; Liu C; Vidal I; Mana-Ay M; Voter AF; Solnes LB; Ross AE; Gafita A; Schaeffer EM; Bivalacqua TJ; Pienta KJ; Pomper MG; Lodge MA; Song DY; Oldan JD; Allaf ME; De Marzo AM; Sheikhbahaei S; Gorin MA; Rowe SP
    J Nucl Med; 2024 Jan; 65(1):87-93. PubMed ID: 38050147
    [TBL] [Abstract] [Full Text] [Related]  

  • 3. Clinical target volume delineation quality assurance for MRI-guided prostate radiotherapy using deep learning with uncertainty estimation.
    Min H; Dowling J; Jameson MG; Cloak K; Faustino J; Sidhom M; Martin J; Cardoso M; Ebert MA; Haworth A; Chlap P; de Leon J; Berry M; Pryor D; Greer P; Vinod SK; Holloway L
    Radiother Oncol; 2023 Sep; 186():109794. PubMed ID: 37414257
    [TBL] [Abstract] [Full Text] [Related]  

  • 4. prostate cancer: Early Detection and Assessing Clinical Risk Using Deep Machine Learning of High Dimensional Peripheral Blood Flow Cytometric Phenotyping Data.
    Cosma G; McArdle SE; Foulds GA; Hood SP; Reeder S; Johnson C; Khan MA; Pockley AG
    Front Immunol; 2021; 12():786828. PubMed ID: 34975879
    [TBL] [Abstract] [Full Text] [Related]  

  • 5. Development and validation of the 3D U-Net algorithm for segmentation of pelvic lymph nodes on diffusion-weighted images.
    Liu X; Sun Z; Han C; Cui Y; Huang J; Wang X; Zhang X; Wang X
    BMC Med Imaging; 2021 Nov; 21(1):170. PubMed ID: 34774001
    [TBL] [Abstract] [Full Text] [Related]  

  • 6. FKBP4 integrates FKBP4/Hsp90/IKK with FKBP4/Hsp70/RelA complex to promote lung adenocarcinoma progression via IKK/NF-κB signaling.
    Zong S; Jiao Y; Liu X; Mu W; Yuan X; Qu Y; Xia Y; Liu S; Sun H; Wang L; Cui B; Liu X; Li P; Zhao Y
    Cell Death Dis; 2021 Jun; 12(6):602. PubMed ID: 34112753
    [TBL] [Abstract] [Full Text] [Related]  

  • 7. Activator of G protein signaling 3 modulates prostate tumor development and progression.
    Adekoya TO; Smith N; Aladeniyi T; Blumer JB; Chen XL; Richardson RM
    Carcinogenesis; 2019 Dec; 40(12):1504-1513. PubMed ID: 31215992
    [TBL] [Abstract] [Full Text] [Related]  

  • 8. Validation of IMPROD biparametric MRI in men with clinically suspected prostate cancer: A prospective multi-institutional trial.
    Jambor I; Verho J; Ettala O; Knaapila J; Taimen P; Syvänen KT; Kiviniemi A; Kähkönen E; Perez IM; Seppänen M; Rannikko A; Oksanen O; Riikonen J; Vimpeli SM; Kauko T; Merisaari H; Kallajoki M; Mirtti T; Lamminen T; Saunavaara J; Aronen HJ; Boström PJ
    PLoS Med; 2019 Jun; 16(6):e1002813. PubMed ID: 31158230
    [TBL] [Abstract] [Full Text] [Related]  

  • 9. Risk of subsequent primary cancers after carbon ion radiotherapy, photon radiotherapy, or surgery for localised prostate cancer: a propensity score-weighted, retrospective, cohort study.
    Mohamad O; Tabuchi T; Nitta Y; Nomoto A; Sato A; Kasuya G; Makishima H; Choy H; Yamada S; Morishima T; Tsuji H; Miyashiro I; Kamada T
    Lancet Oncol; 2019 May; 20(5):674-685. PubMed ID: 30885458
    [TBL] [Abstract] [Full Text] [Related]  

  • 10. Molecular dynamics simulations of site point mutations in the tpr domain of cyclophilin 40 identify conformational states with distinct dynamic and enzymatic properties.
    Gur M; Blackburn EA; Ning J; Narayan V; Ball KL; Walkinshaw MD; Erman B
    J Chem Phys; 2018 Apr; 148(14):145101. PubMed ID: 29655319
    [TBL] [Abstract] [Full Text] [Related]  

  • 11. Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent prostate cancer and are Associated with Early Age at Death.
    Na R; Zheng SL; Han M; Yu H; Jiang D; Shah S; Ewing CM; Zhang L; Novakovic K; Petkewicz J; Gulukota K; Helseth DL; Quinn M; Humphries E; Wiley KE; Isaacs SD; Wu Y; Liu X; Zhang N; Wang CH; Khandekar J; Hulick PJ; Shevrin DH; Cooney KA; Shen Z; Partin AW; Carter HB; Carducci MA; Eisenberger MA; Denmeade SR; McGuire M; Walsh PC; Helfand BT; Brendler CB; Ding Q; Xu J; Isaacs WB
    Eur Urol; 2017 May; 71(5):740-747. PubMed ID: 27989354
    [TBL] [Abstract] [Full Text] [Related]  

  • 12. Targeting Binding Function-3 of the Androgen Receptor Blocks Its Co-Chaperone Interactions, Nuclear Translocation, and Activation.
    Lallous N; Leblanc E; Munuganti RS; Hassona MD; Nakouzi NA; Awrey S; Morin H; Roshan-Moniri M; Singh K; Lawn S; Yamazaki T; Adomat HH; Andre C; Daugaard M; Young RN; Guns ES; Rennie PS; Cherkasov A
    Mol Cancer Ther; 2016 Dec; 15(12):2936-2945. PubMed ID: 27765852
    [TBL] [Abstract] [Full Text] [Related]  

  • 13. Prediction of Pathological Stage in Patients with prostate cancer: A Neuro-Fuzzy Model.
    Cosma G; Acampora G; Brown D; Rees RC; Khan M; Pockley AG
    PLoS One; 2016; 11(6):e0155856. PubMed ID: 27258119
    [TBL] [Abstract] [Full Text] [Related]  

  • 14. Molecular cloning of canine co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA) and investigation of its ability to suppress androgen receptor signalling in androgen-independent prostate cancer.
    Kato Y; Ochiai K; Michishita M; Azakami D; Nakahira R; Morimatsu M; Ishiguro-Oonuma T; Yoshikawa Y; Kobayashi M; Bonkobara M; Kobayashi M; Takahashi K; Watanabe M; Omi T
    Vet J; 2015 Nov; 206(2):143-8. PubMed ID: 26346258
    [TBL] [Abstract] [Full Text] [Related]  

  • 15. Steroid Receptor-Associated Immunophilins: Candidates for Diverse Drug-Targeting Approaches in Disease.
    Ratajczak T
    Curr Mol Pharmacol; 2015; 9(1):66-95. PubMed ID: 25986567
    [TBL] [Abstract] [Full Text] [Related]  

  • 16. Age at diagnosis on prostate cancer survival undergoing androgen deprivation therapy as primary treatment in daily practice: results from Japanese observational cohort.
    Inamoto T; Azuma H; Hinotsu S; Tsukamoto T; Oya M; Ogawa O; Kitamura T; Kazuhiro S; Naito S; Namiki M; Nishimura K; Hirao Y; Usami M; Murai M; Akaza H;
    J Cancer Res Clin Oncol; 2014 Jul; 140(7):1197-204. PubMed ID: 24676427
    [TBL] [Abstract] [Full Text] [Related]  

  • 17. Crystal structures of the free and ligand-bound FK1-FK2 domain segment of FKBP52 reveal a flexible inter-domain hinge.
    Bracher A; Kozany C; Hähle A; Wild P; Zacharias M; Hausch F
    J Mol Biol; 2013 Nov; 425(22):4134-44. PubMed ID: 23933011
    [TBL] [Abstract] [Full Text] [Related]  

  • 18. Knockdown of the cochaperone SGTA results in the suppression of androgen and PI3K/Akt signaling and inhibition of prostate cancer cell proliferation.
    Trotta AP; Need EF; Selth LA; Chopra S; Pinnock CB; Leach DA; Coetzee GA; Butler LM; Tilley WD; Buchanan G
    Int J Cancer; 2013 Dec; 133(12):2812-23. PubMed ID: 23740762
    [TBL] [Abstract] [Full Text] [Related]  

  • 19. The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation.
    Ahmed SF; Deb S; Paul I; Chatterjee A; Mandal T; Chatterjee U; Ghosh MK
    J Biol Chem; 2012 May; 287(19):15996-6006. PubMed ID: 22427670
    [TBL] [Abstract] [Full Text] [Related]  

  • 20. Hsp90 can accommodate the simultaneous binding of the FKBP52 and HOP proteins.
    Hildenbrand ZL; Molugu SK; Herrera N; Ramirez C; Xiao C; Bernal RA
    Oncotarget; 2011; 2(1-2):43-58. PubMed ID: 21378414
    [TBL] [Abstract] [Full Text] [Related]  


    [Next]

    of 2.