These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The amino-terminal C/H1 domain of CREB binding protein mediates zta transcriptional activation of latent Epstein-Barr virus.
    Author: Zerby D, Chen CJ, Poon E, Lee D, Shiekhattar R, Lieberman PM.
    Journal: Mol Cell Biol; 1999 Mar; 19(3):1617-26. PubMed ID: 10022850.
    Abstract:
    Latent Epstein-Barr virus (EBV) is maintained as a nucleosome-covered episome that can be transcriptionally activated by overexpression of the viral immediate-early protein, Zta. We show here that reactivation of latent EBV by Zta can be significantly enhanced by coexpression of the cellular coactivators CREB binding protein (CBP) and p300. A stable complex containing both Zta and CBP could be isolated from lytically stimulated, but not latently infected RAJI nuclear extracts. Zta-mediated viral reactivation and transcriptional activation were both significantly inhibited by coexpression of the E1A 12S protein but not by an N-terminal deletion mutation of E1A (E1ADelta2-36), which fails to bind CBP. Zta bound directly to two related cysteine- and histidine-rich domains of CBP, referred to as C/H1 and C/H3. These domains both interacted specifically with the transcriptional activation domain of Zta in an electrophoretic mobility shift assay. Interestingly, we found that the C/H3 domain was a potent dominant negative inhibitor of Zta transcriptional activation function. In contrast, an amino-terminal fragment containing the C/H1 domain was sufficient for coactivation of Zta transcription and viral reactivation function. Thus, CBP can stimulate the transcription of latent EBV in a histone acetyltransferase-independent manner mediated by the CBP amino-terminal C/H1-containing domain. We propose that CBP may regulate aspects of EBV latency and reactivation by integrating cellular signals mediated by competitive interactions between C/H1, C/H3, and the Zta activation domain.
    [Abstract] [Full Text] [Related] [New Search]