These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of hippocampal 5-HT synthesis by fluoxetine and paroxetine: evidence for the involvement of both 5-HT1A and 5-HT1B/D autoreceptors. Author: Barton CL, Hutson PH. Journal: Synapse; 1999 Jan; 31(1):13-9. PubMed ID: 10025679. Abstract: Hippocampal serotonin (5-hydroxytryptamine, 5-HT) synthesis, as determined by the accumulation of 5-hydroxytryptophan (5-HTP) following inhibition of L-aromatic amino acid decarboxylase with NSD 1015, was inhibited by systemic administration of the selective serotonin reuptake inhibitors fluoxetine (10 mg/kg i.p.) and paroxetine (3 mg/kg i.p.). Pretreatment of rats with the selective 5-HT1A receptor antagonist WAY 100635 for a period of 7 days using subcutaneously implanted osmotic minipumps (1 mg/kg/day) was sufficient to block the inhibition of 5-HT synthesis following the 5-HT 1A receptor agonist 8-OH-DPAT (0.3 mg/kg s.c.), but failed to inhibit the decrease of hippocampal 5-HT synthesis by fluoxetine (10 mg/kg i.p.) or paroxetine (3 mg/kg i.p.). Similarly, pretreatment of rats with GR 127935 (5 mg/kg i.p.), an antagonist with high affinity for 5-HT1B/D receptors, blocked the reduction of hippocampal 5-HT synthesis following the 5-HT receptor agonist TFMPP (3 mg/kg s.c.) without affecting the reduction of hippocampal 5-HT synthesis by either fluoxetine or paroxetine. In contrast, pretreatment with WAY 100635 (1 mg/kg/day, for 7 days s.c. in osmotic minipumps) in combination with GR 127935 (5 mg/kg i.p.) significantly attenuated the decrease of hippocampal 5-HT synthesis by both fluoxetine and paroxetine. These results indicate that both 5-HT1A and 5-HT1B/1D receptors, which function in the rat as inhibitory somatodendritic and nerve terminal autoreceptors, independently regulate hippocampal 5-HT synthesis and must be simultaneously blocked to prevent the inhibition of 5-HT synthesis by selective serotonin reuptake inhibitors which increase 5-HT availability at both nerve terminals in hippocampus and 5-HT cell bodies in the raphe nuclei.[Abstract] [Full Text] [Related] [New Search]