These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of spinal cord injury on spermatogenesis and the expression of messenger ribonucleic acid for Sertoli cell proteins in rat Sertoli cell-enriched testes.
    Author: Huang HF, Li MT, Anesetti R, Giglio W, Ottenweller JE, Pogach LM.
    Journal: Biol Reprod; 1999 Mar; 60(3):635-41. PubMed ID: 10026110.
    Abstract:
    The study was an examination of the effects of spinal cord injury (SCI) on spermatogenesis and Sertoli cell functions in adult rats with Sertoli cell-enriched (SCE) testes. The effects of SCI on the seminiferous epithelium were characterized by abnormalities in the remaining spermatogenic cells during the first month after SCI. Three days after SCI, serum testosterone levels were 80% lower, while serum FSH and LH levels were 25% and 50% higher, respectively, than those of sham control SCE rats. At this time, the levels of mRNA for androgen receptor (AR), FSH receptor (FSH-R), and androgen-binding protein (ABP) were normal whereas those for transferrin (Trf) had decreased by 40%. Thereafter, serum testosterone levels increased, but they remained lower than those of the sham control rats 28 days after SCI; and serum FSH and LH levels returned to normal. The levels of mRNA for AR, ABP, and Trf exhibited a biphasic increase 7 days after SCI and remained elevated 28 days after SCI. FSH-R mRNA levels were also elevated 90 days after SCI. Unexpectedly, active spermatogenesis, including qualitatively complete spermatogenesis, persisted in > 40% of the tubules 90 days after SCI. These results suggest that the stem cells and/or undifferentiated spermatogonia in SCE testes are less susceptible to the deleterious effects of SCI than the normal testes and that they were able to proliferate and differentiate after SCI. The presence of elevated levels of mRNA for Sertoli cell FSH-R and AR, as well as of that for the Sertoli cell proteins, in the SCE testes during the chronic stage of SCI suggests a modification of Sertoli cell physiology. Such changes in Sertoli cell functions may provide a beneficial environment for the proliferation of the stem cells and differentiation of postmeiotic cells, thus resulting in the persistence of spermatogenesis in these testes.
    [Abstract] [Full Text] [Related] [New Search]