These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A cyanobacterial hemoglobin with unusual ligand binding kinetics and stability properties.
    Author: Thorsteinsson MV, Bevan DR, Potts M, Dou Y, Eich RF, Hargrove MS, Gibson QH, Olson JS.
    Journal: Biochemistry; 1999 Feb 16; 38(7):2117-26. PubMed ID: 10026295.
    Abstract:
    The glbN gene of the cyanobacterium Nostoc commune UTEX 584 encodes a hemoprotein, named cyanoglobin, that has high oxygen affinity. The basis for the high oxygen affinity of cyanoglobin was investigated through kinetic studies that utilized stopped-flow spectrophotometry and flash photolysis. Association and dissociation rate constants were measured at 20 degrees C for oxygen, carbon monoxide, nitric oxide, and methyl and ethyl isocyanides. The association rate constants for the binding of these five ligands to cyanoglobin are the highest reported for any naturally occurring hemoglobin, suggesting an unhindered and apolar ligand binding pocket. Cyanoglobin also shows high rates of autoxidation and hemin loss, indicating that the prosthetic group is readily accessible to solvent. The ligand binding behavior of cyanoglobin was more similar to that of leghemoglobin a than to that of sperm whale myoglobin. Collectively, the data support the model of cyanoglobin function described by Hill et al. [(1996) J. Bacteriol. 178, 6587-6598], in which cyanoglobin sequesters oxygen, and presents it to, or is a part of, a terminal cytochrome oxidase complex in Nostoc commune UTEX 584 under microaerobic conditions, when nitrogen fixation, and thus ATP demand, is maximal.
    [Abstract] [Full Text] [Related] [New Search]