These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Incision at nucleotide insertions/deletions and base pair mismatches by the SP nuclease of spinach.
    Author: Oleykowski CA, Bronson Mullins CR, Chang DW, Yeung AT.
    Journal: Biochemistry; 1999 Feb 16; 38(7):2200-5. PubMed ID: 10026304.
    Abstract:
    Spinach leaves contain a highly active nuclease called SP. The purified enzyme incises single-stranded DNA, RNA, and double-stranded DNA that has been destabilized by A-T-rich regions and DNA lesions [Strickland et al. (1991) Biochemistry 30, 9749-9756]. This broad range of activity has suggested that SP may be similar to a family of nucleases represented by S1, P1, and the mung bean nuclease. However, unlike these single-stranded nucleases that require acidic pH and low ionic strength conditions, SP has a neutral pH optimum and is active over a wide range of salt concentrations. We have extended these findings and showed that an outstanding substrate for SP is a mismatched DNA duplex. For base-substitution mismatches, SP incises at all mismatches except those containing a guanine residue. SP also cuts at insertion/deletions of one or more nucleotides. Where the extrahelical DNA loop contains one nucleotide, the preference of extrahelical nucleotide is A >> T approximately C but undetectable at G. The inability of SP to cut at guanine residues and the favoring of A-T-rich regions distinguish SP from the CEL I family of neutral pH mismatch endonucleases recently discovered in celery and other plants [Oleykowski et al. (1998) Nucleic Acids Res. 26, 4597-4602]. SP, like CEL I, does not turn over after incision at a mismatched site in vitro. Similar to CEL I, the presence of a DNA polymerase or a DNA ligase allows SP to turn over and stimulate its activity in vitro by about 20-fold. The possibility that the SP nuclease may be a natural variant of the CEL I family of mismatch endonucleases is discussed.
    [Abstract] [Full Text] [Related] [New Search]