These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reactivity of cyanate with valine-1 (alpha) of hemoglobin. A probe of conformational change and anion binding.
    Author: Nigen AM, Bass BD, Manning JM.
    Journal: J Biol Chem; 1976 Dec 10; 251(23):7638-43. PubMed ID: 1002704.
    Abstract:
    The 3-fold increase in the carbamylation rate of Val-1 (alpha) of hemoglobin upon deoxygenation described earlier is now shown to be a sensitive probe of conformational change. Thus, whereas this residue in methemoglobin A is carbamylated at the same rate as in liganded hemoglobin, upon addition of inositol hexaphosphate its carbamylation rate is enhanced 30% as much as the total change in the rate between the CO and deoxy states. For CO-hemoglobin Kansas in the presence of the organic phosphate, the relative increase in the carbamylation rate of this residue is about 50%. These results indicate that methemoglobin A and hemoglobin Kansas in the presence of inositol hexaphosphate do not assume a conformation identical with deoxyhemoglobin but rather form either a mixture of R and T states or an intermediate conformation in the region around Val-1 (alpha). Studies on the mechanism for the rate enhancement in deoxyhemoglobin suggest that the cyanate anion binds to groups in the vicinity of Val-1 (alpha) prior to proton transfer and carbamylation of this NH2-terminal residue. Thus, specific removal with carboxypeptidase B of Arg-141 (alpha), which is close to Val-1 (alpha) in deoxyhemoglobin, abolishes the enhancement in carbamylation. Chloride, which has the same valency as cyanate, is a better competitive inhibitor of the carbamylation of deoxyhemoglobin (Ki = 50 mM) compared with liganded hemoglobin. Nitrate and iodide are also effective inhibitors of the carbamylation of Val-1 (alpha) of deoxyhemoglobin (Ki = 35 mM); inorganic phosphate, sulfate, and fluoride are poor competitive inhibitors. The change in pKa of Val-1 (alpha) upon deoxygenation may be due to its differential interaction with chloride.
    [Abstract] [Full Text] [Related] [New Search]