These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Energy cost of sport rock climbing in elite performers. Author: Booth J, Marino F, Hill C, Gwinn T. Journal: Br J Sports Med; 1999 Feb; 33(1):14-8. PubMed ID: 10027051. Abstract: OBJECTIVES: To assess oxygen uptake (VO2), blood lactate concentration ([La(b)]), and heart rate (HR) response during indoor and outdoor sport climbing. METHODS: Seven climbers aged 25 (SE 1) years, with a personal best ascent without preview or fall (on sight) ranging from 6b to 7a were assessed using an indoor vertical treadmill with artificial rock hand/foot holds and a discontinuous protocol with climbing velocity incremented until voluntary fatigue. On a separate occasion the subjects performed a 23.4 m outdoor rock climb graded 5c and taking 7 min 36 s (SE 33 s) to complete. Cardiorespiratory parameters were measured using a telemetry system and [La(b)] collected at rest and after climbing. RESULTS: Indoor climbing elicited a peak oxygen uptake (VO2climb-peak) and peak HR (HRpeak) of 43.8 (SE 2.2) ml/kg/min and 190 (SE 4) bpm, respectively and increased blood lactate concentration [La(b)] from 1.4 (0.1) to 10.2 (0.6) mmol/l (p < 0.05). During outdoor climbing VO2 and HR increased to about 75% and 83% of VO2climb-peak and HRpeak, respectively. [La(b)] increased from 1.3 (0.1) at rest to 4.5 mmol/l (p < 0.05) at 2 min 32 s (8 s) after completion of the climb. CONCLUSIONS: The results suggest that for elite climbers outdoor sport rock climbs of five to 10 minutes' duration and moderate difficulty require a significant portion of the VO2climb-peak. The higher HR and VO2 for outdoor climbing and the increased [La(b)] could be the result of repeated isometric contractions, particularly from the arm and forearm muscles.[Abstract] [Full Text] [Related] [New Search]