These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ergoline derivative LEK-8829-induced turning behavior in rats with unilateral striatal ibotenic acid lesions: interaction with bromocriptine.
    Author: Sprah L, Zivin M, Sket D.
    Journal: J Pharmacol Exp Ther; 1999 Mar; 288(3):1093-100. PubMed ID: 10027846.
    Abstract:
    LEK-8829 [9,10-didehydro-N-methyl-(2-propynyl)-6-methyl-8- aminomethylergoline bimaleinate] is an antagonist of dopamine D2 receptors and serotonin (5-HT)2 and 5-HT1A receptors in intact animals and a D1 receptor agonist in dopamine-depleted animals. In the present study, we used rats with unilateral striatal lesions with ibotenic acid (IA) to investigate the dopamine receptor activities of LEK-8829 in a model with innervated dopamine receptors. The IA-lesioned rats circled ipsilaterally when challenged with apomorphine, the mixed agonist on D1/D2 receptors. LEK-8829 induced a dose-dependent contralateral turning that was blocked by D1 receptor antagonist SCH-23390. The treatment with D1 receptor agonist SKF-82958 induced ipsilateral turning, whereas the treatment with D2 receptor antagonist haloperidol induced contralateral posture. The combined treatment with SKF-82958 and haloperidol resulted in a weak contralateral turning, indicating the possible receptor mechanism of contralateral turning induced by LEK-8829. Bromocriptine induced a weak ipsilateral turning that was blocked by haloperidol. The ipsilateral turning induced by bromocriptine was significantly potentiated by the coadministration of a low dose but not by a high dose of LEK-8829. The potentiation of turning was blocked either by SCH-23390 or by haloperidol. The potentiation of ipsilateral turning suggests the costimulation of D2 and D1 receptors by bromocriptine and LEK-8829, respectively, whereas the lack of potentiation by the highest dose of LEK-8829 may be explained by the opposing activity of LEK-8829 and bromocriptine at D2 receptors. We propose that the D2 and 5HT2 receptor-blocking and D1 receptor-stimulating profile of LEK-8829 is promising for the treatment of negative symptoms of schizophrenia.
    [Abstract] [Full Text] [Related] [New Search]