These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alteration of G1 cell-cycle protein expression and induction of p53 but not p21/waf1 by the DNA-modifying carcinogen 2-acetylaminofluorene in growth-stimulated hepatocytes in vitro. Author: Lindeman B, Skarpen E, Thoresen GH, Christoffersen T, Wierød L, Madshus IH, Huitfeldt HS. Journal: Mol Carcinog; 1999 Jan; 24(1):36-46. PubMed ID: 10029409. Abstract: 2-Acetylaminofluorene (AAF) is a potent tumor promoter in rat liver carcinogenesis models. In the resistant hepatocyte model, AAF is combined with a growth stimulus for efficient promotion of preneoplastic lesions. The promoting property of AAF in this model is closely associated with mito-inhibition of normal hepatocytes, an effect to which initiated cells are resistant. How AAF induces growth arrest is not known, but genotoxic as well as non-genotoxic effects have been implicated. To elucidate the mechanisms of AAF-induced mito-inhibition, we studied the expression of the tumor suppressor protein p53 and the cyclin-dependent kinase (cdk) complexes mediating G1 progression and S-phase entry. Hepatocytes were isolated from male Fisher 344 rats fed either a control diet or a diet supplemented with 0.02% AAF for 1 wk and cultured in a defined serum-free medium containing epidermal growth factor, insulin, and dexamethasone. Thymidine labeling revealed a profound inhibition of DNA synthesis in AAF-exposed cells compared with control cells. The retinoblastoma protein did not become hyperphosphorylated in AAF-exposed cells. Thus, inhibition of G1 cyclin-cdk activity was implied as a cause of growth arrest. Indeed, G1 cell-cycle arrest was accompanied by reduced induction and nuclear accumulation of the cyclin D1-cdk4 complex and inhibited nuclear translocation of cdk2. Furthermore, the growth arrest was not mediated through p21/waf1 upregulation, although nuclear levels of p53 were increased. Thus, carcinogen-induced mito-inhibition may be effected by altered levels and localization of G1 cyclin-cdk complexes, independent of the upregulation of cdk inhibitory proteins.[Abstract] [Full Text] [Related] [New Search]